Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind a prime number S containing given number N in it

Find a prime number S containing given number N in it

Given an integer N, find a prime number S such that all digits of N occur in a contiguous sequence. There may be multiple answers. Print any one of them.

Example:

Input: N = 42
Output: 42013
Explanation: 42013 is a prime and 42 occurs as a contiguous number in it. 15427 is also a correct answer.

Input: N = 47
Output: 47
Explanation: 47 itself is a prime

Naive Approach: Below steps can be followed:

  • Iterate through all the numbers starting from N
  • Convert every number into a string with to_string() function
  • Check for the required substring using str.find() function
  • If there is any number that has N as a substring and it is prime then return that number

Time Complexity: O(S), where S is the required prime number

Efficient Approach: Below steps can be followed:

  • The fact can be used that a number with value upto 1e12, between two consecutive primes, there are at most 464 non-prime numbers.
  • Extend the current number N by multiplying by 1000.
  • After that iterate through the next numbers one by one and check each of them.
  • If the number is prime then print that number.
  • It is easy to see that the first condition will always follow as the digits except the last three will be N.

Below is the implementation of the above approach:

C++




// C++ Implementation for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number is prime
bool isPrime(long long N)
{
    if (N == 1)
        return false;
    for (long long i = 2; i <= sqrt(N); i++)
 
        // If N is divisible then its not a prime
        if (N % i == 0)
            return false;
    return true;
}
// Function to print a prime number
// which has N as a substring
long long prime_substring_Number(long long N)
{
    // Check for the base case
    if (N == 0) {
        return 103;
 
        // 103 is a prime
    }
 
    // multiply N by 10^3
    // Check for numbers from
    // N*1000 to N*1000 + 464
    N *= 1000;
    for (long long i = N; i < N + 465; i++) {
        if (isPrime(i)) {
            return i;
        }
    }
    return 0;
}
 
// Driver Code
int main()
{
    long N = 42;
    cout << prime_substring_Number(N);
}


Java




/*package whatever //do not write package name here */
import java.io.*;
class GFG {
static boolean isPrime(long N)
{
    if (N == 1)
        return false;
    for (long i = 2; i <= Math.sqrt(N); i++)
 
        // If N is divisible then its not a prime
        if (N % i == 0)
            return false;
    return true;
}
   
// Function to print a prime number
// which has N as a substring
static long prime_substring_Number(long N)
{
    // Check for the base case
    if (N == 0) {
        return 103;
 
        // 103 is a prime
    }
 
    // multiply N by 10^3
    // Check for numbers from
    // N*1000 to N*1000 + 464
    N *= 1000;
    for (long i = N; i < N + 465; i++) {
        if (isPrime(i)) {
            return i;
        }
    }
    return 0;
}
 
// Driver Code
    public static void main(String[] args)
    {
        long N = 42;
        System.out.println(prime_substring_Number(N));
    }
}
 
// This code is contributed by maddler.


Python3




# python Implementation for the above approach
# importing math library
from math import *
 
# Function to check if a number is prime
def isPrime(N) :
    if N > 1:
       
      # Iterate from 2 to n / 2
      for i in range(2, int(N/2)+1):
         
        # If num is divisible by any number between
        # 2 and n / 2, it is not prime
        if (N % i) == 0:
            return False
      else:
        return True 
    else:
        return False
       
# Function to print a prime number
# which has N as a substring
def prime_substring_Number(N) :
   
    # Check for the base case
    if (N == 0) :
        return 103
 
        # 103 is a prime
 
    # multiply N by 10^3
    # Check for numbers from
    # N*1000 to N*1000 + 464
    N =N * 1000
    for i in range(N,N + 465):
        if (isPrime(i)) :
            return i
         
    return 0
 
# Driver Code
N = 42
print(prime_substring_Number(N))
 
# This code is contributed by anudeep23042002.


C#




// C# Implementation for the above approach
using System;
class GFG {
 
    // Function to check if a number is prime
    static bool isPrime(long N)
    {
        if (N == 1)
            return false;
        for (long i = 2; i <= Math.Sqrt(N); i++)
 
            // If N is divisible then its not a prime
            if (N % i == 0)
                return false;
        return true;
    }
    // Function to print a prime number
    // which has N as a substring
    static long prime_substring_Number(long N)
    {
        // Check for the base case
        if (N == 0) {
            return 103;
 
            // 103 is a prime
        }
 
        // multiply N by 10^3
        // Check for numbers from
        // N*1000 to N*1000 + 464
        N *= 1000;
        for (long i = N; i < N + 465; i++) {
            if (isPrime(i)) {
                return i;
            }
        }
        return 0;
    }
 
    // Driver Code
    public static void Main()
    {
        long N = 42;
        Console.WriteLine(prime_substring_Number(N));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to check if a number is prime
        function isPrime(N) {
            if (N == 1)
                return false;
            for (let i = 2; i <= Math.sqrt(N); i++)
 
                // If N is divisible then its not a prime
                if (N % i == 0)
                    return false;
            return true;
        }
         
        // Function to print a prime number
        // which has N as a substring
        function prime_substring_Number(N)
        {
         
            // Check for the base case
            if (N == 0) {
                return 103;
 
                // 103 is a prime
            }
 
            // multiply N by 10^3
            // Check for numbers from
            // N*1000 to N*1000 + 464
            N *= 1000;
            for (let i = N; i < N + 465; i++) {
                if (isPrime(i)) {
                    return i;
                }
            }
            return 0;
        }
 
        // Driver Code
        let N = 42;
        document.write(prime_substring_Number(N));
 
// This code is contributed by Potta Lokesh
    </script>


Output

42013

Time Complexity: O(sqrt(N*1000)*300)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments