Given a grid of size m * n, let us assume you are starting at (1, 1) and your goal is to reach (m, n). At any instance, if you are on (x, y), you can either go to (x, y + 1) or (x + 1, y).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space are marked as 1 and 0 respectively in the grid.
Examples:Â Â
Input: [[0, 0, 0], [0, 1, 0], [0, 0, 0]] Output : 2 There is only one obstacle in the middle.
Method 1: Recursion
We have discussed the problem to count the number of unique paths in a Grid when no obstacle was present in the grid. But here the situation is quite different. While moving through the grid, we can get some obstacles that we can not jump and the way to reach the bottom right corner is blocked.Â
C++
// C++ code to find number of unique paths // in a Matrix #include<bits/stdc++.h> using namespace std; Â
int  UniquePathHelper( int i, int j, int r, int c, vector<vector< int >>& A){     // boundary condition or constraints     if (i == r || j == c){       return 0 ;     } Â
    if (A[i][j] == 1){       return 0 ;     }          // base case     if (i == r-1 && j == c-1){       return 1 ;     } Â
    return  UniquePathHelper(i+1, j, r, c, A) +             UniquePathHelper(i, j+1, r, c, A) ; } Â
Â
int uniquePathsWithObstacles(vector<vector< int >>& A) { Â Â Â Â Â Â Â Â Â int r = A.size(), c = A[0].size(); Â
         return UniquePathHelper(0, 0, r, c, A) ; } Â
// Driver code int main() { Â Â Â vector<vector< int >> A = { { 0, 0, 0 }, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â { 0, 1, 0 }, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â { 0, 0, 0 } }; Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â cout << uniquePathsWithObstacles(A) << " \n" ;Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â } |
Java
// Java code to find number of unique paths // in a Matrix import java.io.*; Â
class GFG { Â
  static int UniquePathHelper( int i, int j, int r, int c,                               int [][] A)   {     // boundary condition or constraints     if (i == r || j == c) {       return 0 ;     } Â
    if (A[i][j] == 1 ) {       return 0 ;     } Â
    // base case     if (i == r - 1 && j == c - 1 ) {       return 1 ;     } Â
    return UniquePathHelper(i + 1 , j, r, c, A)       + UniquePathHelper(i, j + 1 , r, c, A);   } Â
  static int uniquePathsWithObstacles( int [][] A)   { Â
    int r = A.length, c = A[ 0 ].length; Â
    return UniquePathHelper( 0 , 0 , r, c, A);   } Â
  // Driver Code   public static void main(String[] args)   {     int [][] A       = { { 0 , 0 , 0 }, { 0 , 1 , 0 }, { 0 , 0 , 0 } }; Â
    System.out.print(uniquePathsWithObstacles(A));   } } Â
// This code is contributed by nipun_aggarwal |
Python3
# Python code to find number of unique paths # in a Matrix def  UniquePathHelper(i, j, r, c, A):        # boundary condition or constraints     if (i = = r or j = = c):       return 0          if (A[i][j] = = 1 ):       return 0          # base case     if (i = = r - 1 and j = = c - 1 ):       return 1 Â
    return  UniquePathHelper(i + 1 , j, r, c, A) + UniquePathHelper(i, j + 1 , r, c, A) Â
def uniquePathsWithObstacles(A): Â Â Â Â r,c = len (A), len (A[ 0 ]) Â Â Â Â Â Â Â Â Â return UniquePathHelper( 0 , 0 , r, c, A) Â
# Driver code A = [ [ 0 , 0 , 0 ], Â Â Â Â Â Â [ 0 , 1 , 0 ], Â Â Â Â Â Â [ 0 , 0 , 0 ] ] Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â print (uniquePathsWithObstacles(A))Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
# This code is contributed by shinjanpatra |
C#
// C# code to find number of unique paths // in a Matrix using System; class Program { Â
  // Driver code   static void Main( string [] args)   {     int [, ] A = new int [3, 3] { { 0, 0, 0 },                                { 0, 1, 0 },                                { 0, 0, 0 } };     Console.WriteLine(uniquePathsWithObstacles(A));   } Â
  static int uniquePathsWithObstacles( int [, ] A)   {     int r = A.GetLength(0);     int c = A.GetLength(1);     return UniquePathHelper(0, 0, r, c, A);   } Â
  static int UniquePathHelper( int i, int j, int r, int c,                               int [, ] A)   {     // boundary condition or constraints     if (i == r || j == c) {       return 0;     } Â
    if (A[i, j] == 1) {       return 0;     } Â
    // base case     if (i == r - 1 && j == c - 1) {       return 1;     } Â
    return UniquePathHelper(i + 1, j, r, c, A)       + UniquePathHelper(i, j + 1, r, c, A);   } } Â
// This code is contributed by Tapesh(tapeshdua420) |
Javascript
<script> Â
// JavaScript code to find number of unique paths // in a Matrix function  UniquePathHelper(i, j, r, c, A){        // boundary condition or constraints     if (i == r || j == c)       return 0          if (A[i][j] == 1)       return 0          // base case     if (i == r-1 && j == c-1)       return 1 Â
    return  UniquePathHelper(i+1, j, r, c, A) + UniquePathHelper(i, j+1, r, c, A) } Â
function uniquePathsWithObstacles(A){     let r = A.length, c = A[0].length          return UniquePathHelper(0, 0, r, c, A) } Â
// Driver code let A = [ [ 0, 0, 0 ], Â Â Â Â Â Â [ 0, 1, 0 ], Â Â Â Â Â Â [ 0, 0, 0 ] ] Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â document.write(uniquePathsWithObstacles(A))Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
// This code is contributed by shinjanpatra Â
</script> |
2
Time Complexity: O(2m*n)
Auxiliary Space: O(m+n) , because worst path will be when we iterate along corner cells, Recursion will not have all the paths so Space can’t be O(n*m) it should be O(n+m)
Method 2: Using DP
1) Top-Down
The most efficient solution to this problem can be achieved using dynamic programming. Like every dynamic problem concept, we will not recompute the subproblems. A temporary 2D matrix will be constructed and value will be stored using the top-down approach.Â
C++
// C++ code to find number of unique paths // in a Matrix #include <bits/stdc++.h> using namespace std; Â
int UniquePathHelper( int i, int j, int r, int c,                      vector<vector< int > >& A,                      vector<vector< int > >& paths) {     // boundary condition or constraints     if (i == r || j == c) {         return 0;     } Â
    if (A[i][j] == 1) {         return 0;     } Â
    // base case     if (i == r - 1 && j == c - 1) {         return 1;     } Â
    if (paths[i][j] != -1) {         return paths[i][j];     } Â
    return paths[i][j]            = UniquePathHelper(i + 1, j, r, c, A, paths)              + UniquePathHelper(i, j + 1, r, c, A, paths); } Â
int uniquePathsWithObstacles(vector<vector< int > >& A) { Â
    int r = A.size(), c = A[0].size(); Â
    // create a 2D-matrix and initializing     // with value 0 Â
    vector<vector< int > > paths(r, vector< int >(c, -1)); Â
    return UniquePathHelper(0, 0, r, c, A, paths); } Â
// Driver code int main() { Â Â Â Â vector<vector< int > > A Â Â Â Â Â Â Â Â = { { 0, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 } }; Â
    cout << uniquePathsWithObstacles(A) << " \n" ; } |
Java
// Java code to find number of unique paths // in a Matrix import java.util.*; Â
public class Main { Â Â Â Â public static void main(String[] args) Â Â Â Â { Â Â Â Â Â Â Â Â int [][] A Â Â Â Â Â Â Â Â Â Â Â Â = { { 0 , 0 , 0 }, { 0 , 1 , 0 }, { 0 , 0 , 0 } }; Â Â Â Â Â Â Â Â System.out.println(uniquePathsWithObstacles(A)); Â Â Â Â } Â
    public static int uniquePathsWithObstacles( int [][] A)     {         int r = A.length;         int c = A[ 0 ].length;         // create a 2D-matrix and initializing         // with value 0         int [][] paths = new int [r]; Â
        for ( int i = 0 ; i < r; i++) {             Arrays.fill(paths[i], - 1 );         } Â
        return UniquePathHelper( 0 , 0 , r, c, A, paths);     } Â
    public static int UniquePathHelper( int i, int j, int r,                                        int c, int [][] A,                                        int [][] paths)     {         // boundary condition or constraints         if (i == r || j == c) {             return 0 ;         }         else if (A[i][j] == 1 ) {             return 0 ;         }         // base case         else if (i == r - 1 && j == c - 1 ) {             return 1 ;         }         else if (paths[i][j] != - 1 ) { Â
            return paths[i][j];         }         else {             return paths[i][j]                 = UniquePathHelper(i + 1 , j, r, c, A, paths)                   + UniquePathHelper(i, j + 1 , r, c, A,                                      paths);         }     } } Â
// This code is contributed by Tapesh(tapeshdua420) |
Python3
# Python code to find number of unique paths # in a Matrix Â
Â
def UniquePathHelper(i, j, r, c, A, paths):     # boundary condition or constraints     if (i = = r or j = = c):         return 0 Â
    if (A[i][j] = = 1 ):         return 0 Â
    # base case     if (i = = r - 1 and j = = c - 1 ):         return 1 Â
    if (paths[i][j] ! = - 1 ):         return paths[i][j] Â
    paths[i][j] = UniquePathHelper(         i + 1 , j, r, c, A, paths) + UniquePathHelper(i, j + 1 , r, c, A, paths)     return paths[i][j] Â
Â
def uniquePathsWithObstacles(A): Â
    r, c = len (A), len (A[ 0 ]) Â
    # create a 2D-matrix and initializing     # with value 0 Â
    paths = [[ - 1 for i in range (c)] for j in range (r)] Â
    return UniquePathHelper( 0 , 0 , r, c, A, paths) Â
# Driver code Â
Â
A = [[ 0 , 0 , 0 ], [ 0 , 1 , 0 ], [ 0 , 0 , 0 ]] Â
print (uniquePathsWithObstacles(A)) Â
# code is contributed by shinjanpatra |
C#
// C# code to find number of unique paths // in a Matrix using System; Â
class Program { Â
    // Driver code     static void Main( string [] args)     {         int [, ] A = new int [3, 3] { { 0, 0, 0 },                                     { 0, 1, 0 },                                     { 0, 0, 0 } };         Console.WriteLine(uniquePathsWithObstacles(A));     } Â
    static int uniquePathsWithObstacles( int [, ] A)     {         int r = A.GetLength(0);         int c = A.GetLength(1); Â
        // create a 2D-matrix and initializing         // with value -1         int [, ] paths = new int [r, c];         for ( int i = 0; i < r; i++) {             for ( int j = 0; j < c; j++) {                 paths[i, j] = -1;             }         } Â
        return UniquePathHelper(0, 0, r, c, A, paths);     } Â
    static int UniquePathHelper( int i, int j, int r, int c,                                 int [, ] A, int [, ] paths)     {         // boundary condition or constraints         if (i == r || j == c) {             return 0;         } Â
        if (A[i, j] == 1) {             return 0;         } Â
        // base case         if (i == r - 1 && j == c - 1) {             return 1;         } Â
        if (paths[i, j] != -1) {             return paths[i, j];         } Â
        return paths[i][j]             = UniquePathHelper(i + 1, j, r, c, A, paths)               + UniquePathHelper(i, j + 1, r, c, A, paths);     } } Â
// This code is contributed by Tapesh(tapeshdua420) |
Javascript
<script> Â
// JavaScript code to find number of unique paths // in a Matrix function UniquePathHelper(i, j, r, c, A, paths) { Â
    // boundary condition or constraints     if (i == r || j == c) {         return 0;     } Â
    if (paths[i][j] == 1) {         return 0;     } Â
    // base case     if (i == r - 1 && j == c - 1) {         return 1;     } Â
    if (paths[i][j] != -1) {         return paths[i][j];     } Â
    return paths[i][j]            = UniquePathHelper(i + 1, j, r, c, A, paths)            + UniquePathHelper(i, j + 1, r, c, A, paths); } Â
function uniquePathsWithObstacles(A) { Â
    let r = A.length, c = A[0].length; Â
    // create a 2D-matrix and initializing     // with value 0     let paths = new Array(c);     for (let i = 0; i < r; i++){         paths[i] = new Array(c).fill(-1);     } Â
    return UniquePathHelper(0, 0, r, c, A, paths); } Â
// Driver code let AÂ = [ [ 0, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 0 ] ] document.write(uniquePathsWithObstacles(A)) Â
// This code is contributed by shinjanpatra Â
</script> |
2
Time Complexity: O(m*n)Â
Auxiliary Space: O(m*n)
2) Bottom-Up
A temporary 2D matrix will be constructed and value will be stored using the bottom-up approach.Â
Approach:
- Create a 2D matrix of the same size as the given matrix to store the results.
- Traverse through the created array row-wise and start filling the values in it.
- If an obstacle is found, set the value to 0.
- For the first row and column, set the value to 1 if an obstacle is not found.
- Set the sum of the right and the upper values if an obstacle is not present at that corresponding position in the given matrix
- Return the last value of the created 2d matrix
Below is the implementation of the above approach:
C++
// C++ code to find number of unique paths // in a Matrix #include<bits/stdc++.h> using namespace std; Â
int uniquePathsWithObstacles(vector<vector< int >>& A) {          int r = A.size(), c = A[0].size();          // create a 2D-matrix and initializing     // with value 0     vector<vector< int >> paths(r, vector< int >(c, 0));          // Initializing the left corner if     // no obstacle there     if (A[0][0] == 0)         paths[0][0] = 1;              // Initializing first column of     // the 2D matrix     for ( int i = 1; i < r; i++)     {         // If not obstacle         if (A[i][0] == 0)             paths[i][0] = paths[i-1][0];     }          // Initializing first row of the 2D matrix     for ( int j = 1; j < c; j++)     {                  // If not obstacle         if (A[0][j] == 0)             paths[0][j] = paths[0][j - 1];     }            for ( int i = 1; i < r; i++)     {         for ( int j = 1; j < c; j++)         {                          // If current cell is not obstacle             if (A[i][j] == 0)                 paths[i][j] = paths[i - 1][j] +                               paths[i][j - 1];         }     }          // Returning the corner value     // of the matrix     return paths[r - 1]; } Â
// Driver code int main() { Â Â Â vector<vector< int >> A = { { 0, 0, 0 }, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â { 0, 1, 0 }, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â { 0, 0, 0 } }; Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â cout << uniquePathsWithObstacles(A) << " \n" ;Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â } Â
// This code is contributed by ajaykr00kj |
Java
// Java code to find number of unique paths // in a Matrix public class Main { Â Â static int uniquePathsWithObstacles( int [][] A) Â Â { Â
    int r = 3 , c = 3 ; Â
    // create a 2D-matrix and initializing     // with value 0     int [][] paths = new int [r];     for ( int i = 0 ; i < r; i++)     {       for ( int j = 0 ; j < c; j++)       {         paths[i][j] = 0 ;       }     } Â
    // Initializing the left corner if     // no obstacle there     if (A[ 0 ][ 0 ] == 0 )       paths[ 0 ][ 0 ] = 1 ; Â
    // Initializing first column of     // the 2D matrix     for ( int i = 1 ; i < r; i++)     {       // If not obstacle       if (A[i][ 0 ] == 0 )         paths[i][ 0 ] = paths[i - 1 ][ 0 ];     } Â
    // Initializing first row of the 2D matrix     for ( int j = 1 ; j < c; j++)     { Â
      // If not obstacle       if (A[ 0 ][j] == 0 )         paths[ 0 ][j] = paths[ 0 ][j - 1 ];     }  Â
    for ( int i = 1 ; i < r; i++)     {       for ( int j = 1 ; j < c; j++)       { Â
        // If current cell is not obstacle         if (A[i][j] == 0 )           paths[i][j] = paths[i - 1 ][j] +           paths[i][j - 1 ];       }     } Â
    // Returning the corner value     // of the matrix     return paths[r - 1 ];   } Â
  // Driver code   public static void main(String[] args) {     int [][] A = { { 0 , 0 , 0 },                  { 0 , 1 , 0 },                  { 0 , 0 , 0 } }; Â
    System.out.print(uniquePathsWithObstacles(A));   } } Â
// This code is contributed by divyeshrabadiya07. |
Python
# Python code to find number of unique paths in a # matrix with obstacles. Â
def uniquePathsWithObstacles(A): Â
    # create a 2D-matrix and initializing with value 0     paths = [[ 0 ] * len (A[ 0 ]) for i in A]          # initializing the left corner if no obstacle there     if A[ 0 ][ 0 ] = = 0 :         paths[ 0 ][ 0 ] = 1          # initializing first column of the 2D matrix     for i in range ( 1 , len (A)):                  # If not obstacle         if A[i][ 0 ] = = 0 :             paths[i][ 0 ] = paths[i - 1 ][ 0 ]                  # initializing first row of the 2D matrix     for j in range ( 1 , len (A[ 0 ])):                  # If not obstacle         if A[ 0 ][j] = = 0 :             paths[ 0 ][j] = paths[ 0 ][j - 1 ]                  for i in range ( 1 , len (A)):         for j in range ( 1 , len (A[ 0 ])): Â
            # If current cell is not obstacle             if A[i][j] = = 0 :                 paths[i][j] = paths[i - 1 ][j] + paths[i][j - 1 ] Â
    # returning the corner value of the matrix     return paths[ - 1 ][ - 1 ] Â
Â
# Driver Code A = [[ 0 , 0 , 0 ], [ 0 , 1 , 0 ], [ 0 , 0 , 0 ]] print (uniquePathsWithObstacles(A)) |
C#
// C# code to find number of unique paths // in a Matrix using System; class GFG { Â
  static int uniquePathsWithObstacles( int [,] A)   { Â
    int r = 3, c = 3; Â
    // create a 2D-matrix and initializing     // with value 0     int [,] paths = new int [r,c];     for ( int i = 0; i < r; i++)     {       for ( int j = 0; j < c; j++)       {         paths[i, j] = 0;       }     } Â
    // Initializing the left corner if     // no obstacle there     if (A[0, 0] == 0)       paths[0, 0] = 1; Â
    // Initializing first column of     // the 2D matrix     for ( int i = 1; i < r; i++)     {       // If not obstacle       if (A[i, 0] == 0)         paths[i, 0] = paths[i - 1, 0];     } Â
    // Initializing first row of the 2D matrix     for ( int j = 1; j < c; j++)     { Â
      // If not obstacle       if (A[0, j] == 0)         paths[0, j] = paths[0, j - 1];     }  Â
    for ( int i = 1; i < r; i++)     {       for ( int j = 1; j < c; j++)       { Â
        // If current cell is not obstacle         if (A[i, j] == 0)           paths[i, j] = paths[i - 1, j] +           paths[i, j - 1];       }     } Â
    // Returning the corner value     // of the matrix     return paths[r - 1, c - 1];   } Â
  // Driver code   static void Main() {     int [,] A = { { 0, 0, 0 },                 { 0, 1, 0 },                 { 0, 0, 0 } }; Â
    Console.WriteLine(uniquePathsWithObstacles(A));   } } Â
// This code is contributed by divyesh072019. |
Javascript
<script>     // Javascript code to find number of unique paths     // in a Matrix          function uniquePathsWithObstacles(A)     { Â
      let r = 3, c = 3; Â
      // create a 2D-matrix and initializing       // with value 0       let paths = new Array(r);       for (let i = 0; i < r; i++)       {           paths[i] = new Array(c);         for (let j = 0; j < c; j++)         {           paths[i][j] = 0;         }       } Â
      // Initializing the left corner if       // no obstacle there       if (A[0][0] == 0)         paths[0][0] = 1; Â
      // Initializing first column of       // the 2D matrix       for (let i = 1; i < r; i++)       {         // If not obstacle         if (A[i][0] == 0)           paths[i][0] = paths[i - 1][0];       } Â
      // Initializing first row of the 2D matrix       for (let j = 1; j < c; j++)       { Â
        // If not obstacle         if (A[0][j] == 0)           paths[0][j] = paths[0][j - 1];       } Â
      for (let i = 1; i < r; i++)       {         for (let j = 1; j < c; j++)         { Â
          // If current cell is not obstacle           if (A[i][j] == 0)             paths[i][j] = paths[i - 1][j] +             paths[i][j - 1];         }       } Â
      // Returning the corner value       // of the matrix       return paths[r - 1];     }            let A = [ [ 0, 0, 0 ],              [ 0, 1, 0 ],              [ 0, 0, 0 ] ];       document.write(uniquePathsWithObstacles(A));          // This code is contributed by suresh07. </script> |
2
Time Complexity: O(m*n)Â
Auxiliary Space: O(m*n)
Method 3: Space Optimization of DP solution.
In this method, we will use the given ‘A’ 2D matrix to store the previous answer using the bottom-up approach.
Approach
- Start traversing through the given ‘A’ 2D matrix row-wise and fill the values in it.
- For the first row and the first column set the value to 1 if an obstacle is not found.
- For the first row and first column, if an obstacle is found then start filling 0 till the last index in that particular row or column.
- Now start traversing from the second row and column ( eg: A[ 1 ][ 1 ]).
- If an obstacle is found, set 0 at particular Grid ( eg: A[ i ][ j ] ), otherwise set sum of upper and left values at A[ i ][ j ].
- Return the last value of the 2D matrix.
Below is the implementation of the above approach.Â
C++
// CPP program for the above approach Â
#include <bits/stdc++.h> using namespace std; Â
int uniquePathsWithObstacles(vector<vector< int > >& A) { Â
    int r = A.size();     int c = A[0].size(); Â
    // If obstacle is at starting position     if (A[0][0])         return 0; Â
    // Initializing starting position     A[0][0] = 1; Â
    // first row all are '1' until obstacle     for ( int j = 1; j < c; j++) { Â
        if (A[0][j] == 0) {             A[0][j] = A[0][j - 1];         }         else {             // No ways to reach at this index             A[0][j] = 0;         }     } Â
    // first column all are '1' until obstacle     for ( int i = 1; i < r; i++) { Â
        if (A[i][0] == 0) {             A[i][0] = A[i - 1][0];         }         else {             // No ways to reach at this index             A[i][0] = 0;         }     } Â
    for ( int i = 1; i < r; i++) { Â
        for ( int j = 1; j < c; j++) {             // If current cell has no obstacle             if (A[i][j] == 0) { Â
                A[i][j] = A[i - 1][j] + A[i][j - 1];             }             else {                 // No ways to reach at this index                 A[i][j] = 0;             }         }     } Â
    // returning the bottom right     // corner of Grid     return A[r - 1]; } Â
// Driver Code Â
int main() { Â
    vector<vector< int > > A         = { { 0, 0, 0 }, { 0, 1, 0 }, { 0, 0, 0 } }; Â
    cout << uniquePathsWithObstacles(A) << "\n" ; Â
    return 0; } // This code is contributed by hemantraj712 |
Java
// Java program for the above approach import java.io.*; class GFG { Â
    static int uniquePathsWithObstacles( int [][] A)     { Â
        int r = A.length;         int c = A[ 0 ].length; Â
        // If obstacle is at starting position         if (A[ 0 ][ 0 ] != 0 )             return 0 ; Â
        // Initializing starting position         A[ 0 ][ 0 ] = 1 ; Â
        // first row all are '1' until obstacle         for ( int j = 1 ; j < c; j++) { Â
            if (A[ 0 ][j] == 0 ) {                 A[ 0 ][j] = A[ 0 ][j - 1 ];             }             else {                 // No ways to reach at this index                 A[ 0 ][j] = 0 ;             }         } Â
        // first column all are '1' until obstacle         for ( int i = 1 ; i < r; i++) { Â
            if (A[i][ 0 ] == 0 ) {                 A[i][ 0 ] = A[i - 1 ][ 0 ];             }             else {                 // No ways to reach at this index                 A[i][ 0 ] = 0 ;             }         } Â
        for ( int i = 1 ; i < r; i++) { Â
            for ( int j = 1 ; j < c; j++) { Â
                // If current cell has no obstacle                 if (A[i][j] == 0 ) { Â
                    A[i][j] = A[i - 1 ][j] + A[i][j - 1 ];                 }                 else {                     // No ways to reach at this index                     A[i][j] = 0 ;                 }             }         } Â
        // returning the bottom right         // corner of Grid         return A[r - 1 ];     } Â
    // Driver code     public static void main(String[] args)     {         int [][] A             = { { 0 , 0 , 0 }, { 0 , 1 , 0 }, { 0 , 0 , 0 } }; Â
        System.out.print(uniquePathsWithObstacles(A));     } } Â
// This code is contributed by rajsanghavi9. |
Python3
# Python program for the above approach Â
Â
def uniquePathsWithObstacles(A): Â
    r = len (A)     c = len (A[ 0 ]) Â
    # If obstacle is at starting position     if (A[ 0 ][ 0 ]):         return 0 Â
    # Initializing starting position     A[ 0 ][ 0 ] = 1 Â
    # first row all are '1' until obstacle     for j in range ( 1 ,c): Â
        if (A[ 0 ][j] = = 0 ):             A[ 0 ][j] = A[ 0 ][j - 1 ]         else :             # No ways to reach at this index             A[ 0 ][j] = 0 Â
    # first column all are '1' until obstacle     for i in range ( 1 ,r): Â
        if (A[i][ 0 ] = = 0 ):             A[i][ 0 ] = A[i - 1 ][ 0 ]         else :             # No ways to reach at this index             A[i][ 0 ] = 0 Â
    for i in range ( 1 ,r): Â
        for j in range ( 1 ,c):             # If current cell has no obstacle             if (A[i][j] = = 0 ): Â
                A[i][j] = A[i - 1 ][j] + A[i][j - 1 ]             else :                 # No ways to reach at this index                 A[i][j] = 0 Â
    # returning the bottom right     # corner of Grid     return A[r - 1 ] Â
# Driver Code Â
A = [ [ 0 , 0 , 0 ], [ 0 , 1 , 0 ], [ 0 , 0 , 0 ] ] Â
print (uniquePathsWithObstacles(A)) Â
# This code is contributed by shinjanpatra |
C#
// C# program for the above approach using System; using System.Collections.Generic; Â
class Program { Â Â static int uniquePathsWithObstacles( int [, ] A) Â Â { Â Â Â Â int r = A.GetLength(0); Â Â Â Â int c = A.GetLength(1); Â
    // If obstacle is at starting position     if (A[0, 0] != 0)       return 0; Â
    // Initializing starting position     A[0, 0] = 1;     for ( int j = 1; j < c; j++) {       if (A[0, j] == 0) {         A[0, j] = A[0, j - 1];       }       else {         A[0, j] = 0;       }     } Â
    // first row all are '1' until obstacle     for ( int i = 1; i < r; i++) {       if (A[i, 0] == 0) {         A[i, 0] = A[i - 1, 0];       }       else {         // No ways to reach at this index         A[i, 0] = 0;       }     } Â
    for ( int i = 1; i < r; i++) {       for ( int j = 1; j < c; j++) {         // If current cell has no obstacle         if (A[i, j] == 0) {           A[i, j] = A[i - 1, j] + A[i, j - 1];         }         else {           // No ways to reach at this index           A[i, j] = 0;         }       }     }     // returning the bottom right     // corner of Grid     return A[r - 1, c - 1];   }      // Driver code   public static void Main(String[] args)   { Â
    int [, ] A = new int [3, 3] { { 0, 0, 0 },                                { 0, 1, 0 },                                { 0, 0, 0 } }; Â
    Console.WriteLine(uniquePathsWithObstacles(A));   } } Â
// This code is contributed by Tapesh (tapeshdua420) |
Javascript
<script> Â
// JavaScript program for the above approach function uniquePathsWithObstacles(A){ Â
    let r = A.length     let c = A[0].length Â
    // If obstacle is at starting position     if (A[0][0])         return 0 Â
    // Initializing starting position     A[0][0] = 1 Â
    // first row all are '1' until obstacle     for (let j = 1; j < c; j++)     {         if (A[0][j] == 0)             A[0][j] = A[0][j - 1]         else             // No ways to reach at this index             A[0][j] = 0     } Â
    // first column all are '1' until obstacle     for (let i = 1; i < r; i++){ Â
        if (A[i][0] == 0)             A[i][0] = A[i - 1][0]         else             // No ways to reach at this index             A[i][0] = 0     } Â
   for (let i = 1; i < r; i++){ Â
      for (let j = 1; j < c; j++){             // If current cell has no obstacle             if (A[i][j] == 0) Â
                A[i][j] = A[i - 1][j] + A[i][j - 1]             else                 // No ways to reach at this index                 A[i][j] = 0       }    } Â
    // returning the bottom right     // corner of Grid     return A[r - 1] } Â
// Driver Code let A = [ [ 0, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 0 ] ] document.write(uniquePathsWithObstacles(A), "</br>" ) Â
// This code is contributed by shinjanpatra Â
</script> |
2
Time Complexity: O(m*n) Â
Auxiliary Space: O(1)
The 2D Dp Approach:
As Per Problem tell us that we can move in two ways  can either go to (x, y + 1) or (x + 1, y). So we just calculate all possible outcome in both ways and store in 2d dp vector and return the dp[0][0] i.e all possible ways that takes you from (0,0) to (n-1,m-1);
C++
#include <bits/stdc++.h> #define int long long using namespace std; int n, m; int path(vector<vector< int > >& dp, Â Â Â Â Â Â Â Â Â vector<vector< int > >& grid, int i, int j) { Â Â Â Â if (i < n && j < m && grid[i][j] == 1) Â Â Â Â Â Â Â Â return 0; Â Â Â Â if (i == n - 1 && j == m - 1) Â Â Â Â Â Â Â Â return 1; Â Â Â Â if (i >= n || j >= m) Â Â Â Â Â Â Â Â return 0; Â Â Â Â if (dp[i][j] != -1) Â Â Â Â Â Â Â Â return dp[i][j]; Â Â Â Â int left = path(dp, grid, i + 1, j); Â Â Â Â int right = path(dp, grid, i, j + 1); Â Â Â Â return dp[i][j] = left + right; } int uniquePathsWithObstacles(vector<vector< int > >& grid) { Â Â Â Â n = grid.size(); Â Â Â Â m = grid[0].size(); Â Â Â Â if (n == 1 && m == 1 && grid[0][0] == 0) Â Â Â Â Â Â Â Â return 1; Â Â Â Â if (n == 1 && m == 1 && grid[0][0] == 1) Â Â Â Â Â Â Â Â return 0; Â Â Â Â vector<vector< int > > dp(n, vector< int >(m, -1)); Â Â Â Â // for(auto it:dp){ Â Â Â Â //Â Â Â Â for(auto vt:it)cout<<vt<<" "; Â Â Â Â //Â Â Â Â cout<<endl; Â Â Â Â // } Â Â Â Â path(dp, grid, 0, 0); Â Â Â Â //Â for(auto it:dp){ Â Â Â Â //Â Â Â Â for(auto vt:it)cout<<vt<<" "; Â Â Â Â //Â Â Â Â cout<<endl; Â Â Â Â // } Â Â Â Â if (dp[0][0] == -1) Â Â Â Â Â Â Â Â return 0; Â Â Â Â return dp[0][0]; } // Driver Code signed main() { Â Â Â Â vector<vector< int > > v{ { 0, 0, 0 }, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â { 0, 1, 0 }, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â { 0, 0, 0 } }; Â Â Â Â cout << uniquePathsWithObstacles(v) << " \n" ; Â Â Â Â return 0; } |
Java
// Java code for the above approach import java.util.*; Â
class Main { Â Â Â Â static int n, m; Â
    static int path( int [][] dp, int [][] grid, int i, int j)     {         if (i < n && j < m && grid[i][j] == 1 )             return 0 ;         if (i == n - 1 && j == m - 1 )             return 1 ;         if (i >= n || j >= m)             return 0 ;         if (dp[i][j] != - 1 )             return dp[i][j];         int left = path(dp, grid, i + 1 , j);         int right = path(dp, grid, i, j + 1 );         return dp[i][j] = left + right;     } Â
    static int uniquePathsWithObstacles( int [][] grid)     {         n = grid.length;         m = grid[ 0 ].length;         if (n == 1 && m == 1 && grid[ 0 ][ 0 ] == 0 )             return 1 ;         if (n == 1 && m == 1 && grid[ 0 ][ 0 ] == 1 )             return 0 ;         int [][] dp = new int [n][m];         for ( int i = 0 ; i < n; i++) {             for ( int j = 0 ; j < m; j++) {                 dp[i][j] = - 1 ;             }         }         path(dp, grid, 0 , 0 );         if (dp[ 0 ][ 0 ] == - 1 )             return 0 ;         return dp[ 0 ][ 0 ];     } Â
    public static void main(String[] args)     {         int [][] v             = { { 0 , 0 , 0 }, { 0 , 1 , 0 }, { 0 , 0 , 0 } };         System.out.println(uniquePathsWithObstacles(v));     } } Â
// This code is contributed by pradeepkumarppk2003 |
Python3
# Python code for the above approach def uniquePathsWithObstacles(grid): Â Â Â Â n = len (grid) Â Â Â Â m = len (grid[ 0 ]) Â Â Â Â if n = = 1 and m = = 1 and grid[ 0 ][ 0 ] = = 0 : Â Â Â Â Â Â Â Â return 1 Â Â Â Â if n = = 1 and m = = 1 and grid[ 0 ][ 0 ] = = 1 : Â Â Â Â Â Â Â Â return 0 Â Â Â Â dp = [[ - 1 for j in range (m)] for i in range (n)] Â
    def path(dp, grid, i, j):         if i < n and j < m and grid[i][j] = = 1 :             return 0         if i = = n - 1 and j = = m - 1 :             return 1         if i > = n or j > = m:             return 0         if dp[i][j] ! = - 1 :             return dp[i][j]         left = path(dp, grid, i + 1 , j)         right = path(dp, grid, i, j + 1 )         dp[i][j] = left + right         return dp[i][j]     path(dp, grid, 0 , 0 )     if dp[ 0 ][ 0 ] = = - 1 :         return 0     return dp[ 0 ][ 0 ] Â
Â
# Driver Code grid = [[ 0 , 0 , 0 ], [ 0 , 1 , 0 ], [ 0 , 0 , 0 ]] print (uniquePathsWithObstacles(grid)) Â
# This code is contributed by lokeshpotta20. |
Javascript
let n,m; function path(dp, grid, i, j) { Â Â Â Â if (i<n && j<m && grid[i][j]==1) Â Â Â Â Â Â Â Â return 0; Â Â Â Â if (i==n-1 && j==m-1) Â Â Â Â Â Â Â Â return 1; Â Â Â Â if (i>=n || j>=m) Â Â Â Â Â Â Â Â return 0; Â Â Â Â if (dp[i][j]!=-1) Â Â Â Â Â Â Â Â return dp[i][j]; Â Â Â Â let left=path(dp,grid,i+1,j); Â Â Â Â let right=path(dp,grid,i,j+1); Â Â Â Â return dp[i][j]=left+right; } function uniquePathsWithObstacles(grid) { Â Â Â Â n=grid.length; Â Â Â Â m=grid[0].length; Â Â Â Â if (n==1 && m==1 && grid[0][0]==0) Â Â Â Â Â Â Â Â return 1; Â Â Â Â if (n==1 && m==1 && grid[0][0]==1) Â Â Â Â Â Â Â Â return 0; Â Â Â Â let dp= new Array(n); Â Â Â Â for (let i=0; i<n; i++) Â Â Â Â Â Â Â Â dp[i]= new Array(m).fill(-1); Â Â Â Â //for(let i=0; i<dp.length; i++){ Â Â Â Â Â Â Â // for(let j=0; j<dp[0].length; j++) Â Â Â Â Â Â Â Â Â Â //Â console.log(dp[i][j]); Â Â Â Â //Â Â Â Â cout<<endl; Â Â Â // } Â Â Â Â path(dp,grid,0,0); Â Â Â Â //for(let i=0; i<dp.length; i++){ Â Â Â Â Â Â //Â for(let j=0; j<dp[0].length; j++) Â Â Â Â Â Â Â Â //Â Â Â console.log(dp[i][j]); Â Â Â Â //Â Â Â Â cout<<endl; Â Â Â Â //} Â Â Â Â if (dp[0][0]==-1) Â Â Â Â Â Â Â Â return 0; Â Â Â Â return dp[0][0]; } // Driver Code let v=[[ 0, 0, 0 ],[ 0, 1, 0 ],[ 0, 0, 0 ]]; console.log(uniquePathsWithObstacles(v)); |
C#
using System; using System.Collections.Generic; Â
namespace UniquePathsWithObstacles { class Program {     static void Main( string [] args)     {         int [][] grid             = new int [][] { new int [] { 0, 0, 0 },                             new int [] { 0, 1, 0 },                             new int [] { 0, 0, 0 } };         Console.WriteLine(UniquePathsWithObstacles(grid));     } Â
    static int UniquePathsWithObstacles( int [][] grid)     {         int n = grid.Length;         int m = grid[0].Length;         if (n == 1 && m == 1 && grid[0][0] == 0)             return 1;         if (n == 1 && m == 1 && grid[0][0] == 1)             return 0; Â
        int [][] dp = new int [n][];         for ( int i = 0; i < n; i++) {             dp[i] = new int [m];             for ( int j = 0; j < m; j++) {                 dp[i][j] = -1;             }         } Â
        int result = Path(dp, grid, 0, 0);         if (dp[0][0] == -1)             return 0;         return dp[0][0];     } Â
    static int Path( int [][] dp, int [][] grid, int i, int j)     {         int n = grid.Length;         int m = grid[0].Length;         if (i < n && j < m && grid[i][j] == 1)             return 0;         if (i == n - 1 && j == m - 1)             return 1;         if (i >= n || j >= m)             return 0;         if (dp[i][j] != -1)             return dp[i][j];         int left = Path(dp, grid, i + 1, j);         int right = Path(dp, grid, i, j + 1);         return dp[i][j] = left + right;     } } } |
2
Time Complexity: O(M*N),For traversing all possible ways.
Auxiliary Space: O(M*N),For storing in 2D Dp Vector.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!