With the help of inverse_laplace_transform() method, we can compute the inverse of laplace transformation of F(s).
Syntax : inverse_laplace_transform(F, s, t)
Return : Return the unevaluated transformation function.
Example #1 :
In this example, we can see that by using inverse_laplace_transform() method, we are able to compute the inverse laplace transformation and return the unevaluated function.
Python3
# import inverse_laplace_transform from sympy.integrals.transforms import inverse_laplace_transform from sympy import exp, Symbol from sympy.abc import s, t a = Symbol( 'a' , positive = True ) # Using inverse_laplace_transform() method gfg = inverse_laplace_transform(exp( - a * s) / s, s, t) print (gfg) |
Output :
Heaviside(-a + t)
Example #2 :
Python3
# import inverse_laplace_transform from sympy.integrals.transforms import inverse_laplace_transform from sympy import exp, Symbol from sympy.abc import s, t a = Symbol( 'a' , positive = True ) # Using inverse_laplace_transform() method gfg = inverse_laplace_transform(exp( - a * s) / s, s, 5 ) print (gfg) |
Output :
Heaviside(5 – a)
Example #3:
Python3
# import inverse_laplace_transform from sympy.integrals.transforms import inverse_laplace_transform from sympy import exp, Symbol, sin from sympy.abc import s, t a = Symbol( 'a' , positive = True ) # Using inverse_laplace_transform() method gfg = inverse_laplace_transform( 1 / (s * * 2 + a * * 2 ), s, 5 ) print (gfg) |
Output :
sin(5*a)/a