Given a sorted array A of n integers. The task is to find the sum of the minimum of all possible subarrays of A.
Examples:
Input: A = [ 1, 2, 4, 5]
Output: 23
Subsequences are [1], [2], [4], [5], [1, 2], [2, 4], [4, 5] [1, 2, 4], [2, 4, 5], [1, 2, 4, 5]
Minimums are 1, 2, 4, 5, 1, 2, 4, 1, 2, 1.
Sum is 23
Input: A = [1, 2, 3]
Output: 10
Approach: The Naive approach is to generate all possible subarrays, find their minimum and add them to the result.
Efficient Approach: It is given that the array is sorted, so observe that the minimum element occurs N times, the second minimum occurs N-1 times, and so on… Let’s take an example:
arr[] = {1, 2, 3}
Subarrays are {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}
Minimum of each subarray: {1}, {2}, {3}, {1}, {2}, {1}.
where
1 occurs 3 times i.e. n times when n = 3.
2 occurs 2 times i.e. n-1 times when n = 3.
3 occurs 1 times i.e. n-2 times when n = 3.
So, traverse the array and add the current element i.e. (arr[i]* n-i) to the sum.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to find the sum // of minimum of all subarrays int findMinSum( int arr[], int n) { int sum = 0; for ( int i = 0; i < n; i++) sum += arr[i] * (n - i); return sum; } // Driver code int main() { int arr[] = { 3, 5, 7, 8 }; int n = sizeof (arr) / sizeof (arr[0]); cout << findMinSum(arr, n); return 0; } |
Java
// Java implementation of the above approach class GfG { // Function to find the sum // of minimum of all subarrays static int findMinSum( int arr[], int n) { int sum = 0 ; for ( int i = 0 ; i < n; i++) sum += arr[i] * (n - i); return sum; } // Driver code public static void main(String[] args) { int arr[] = { 3 , 5 , 7 , 8 }; int n = arr.length; System.out.println(findMinSum(arr, n)); } } // This code is contributed by Prerna Saini |
Python3
# Python3 implementation of the # above approach # Function to find the sum # of minimum of all subarrays def findMinSum(arr, n): sum = 0 for i in range ( 0 , n): sum + = arr[i] * (n - i) return sum # Driver code arr = [ 3 , 5 , 7 , 8 ] n = len (arr) print (findMinSum(arr, n)) # This code has been contributed # by 29AjayKumar |
C#
// C# implementation of the above approach using System; class GfG { // Function to find the sum // of minimum of all subarrays static int findMinSum( int []arr, int n) { int sum = 0; for ( int i = 0; i < n; i++) sum += arr[i] * (n - i); return sum; } // Driver code public static void Main(String []args) { int []arr = { 3, 5, 7, 8 }; int n = arr.Length; Console.WriteLine(findMinSum(arr, n)); } } // This code is contributed by Arnab Kundu |
PHP
<?php // PHP implementation of the above approach // Function to find the sum // of minimum of all subarrays function findMinSum( $arr , $n ) { $sum = 0; for ( $i = 0; $i < $n ; $i ++) $sum += $arr [ $i ] * ( $n - $i ); return $sum ; } // Driver code $arr = array ( 3, 5, 7, 8 ); $n = count ( $arr ); echo findMinSum( $arr , $n ); // This code is contributed by Arnab Kundu ?> |
Javascript
<script> // Javascript implementation of the above approach // Function to find the sum // of minimum of all subarrays function findMinSum(arr, n) { var sum = 0; for ( var i = 0; i < n; i++) sum += arr[i] * (n - i); return sum; } // Driver code var arr = [ 3, 5, 7, 8 ]; var n = arr.length; document.write( findMinSum(arr, n)); </script> |
49
Time Complexity: O(n)
Auxiliary Space: O(1)
Note: To find the Sum of maximum element of all subarrays in a sorted array, just traverse the array in reverse order and apply the same formula for Sum.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!