Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISum of minimum element of all subarrays of a sorted array

Sum of minimum element of all subarrays of a sorted array

Given a sorted array A of n integers. The task is to find the sum of the minimum of all possible subarrays of A.

Examples:  

Input: A = [ 1, 2, 4, 5] 
Output: 23 
Subsequences are [1], [2], [4], [5], [1, 2], [2, 4], [4, 5] [1, 2, 4], [2, 4, 5], [1, 2, 4, 5] 
Minimums are 1, 2, 4, 5, 1, 2, 4, 1, 2, 1. 
Sum is 23
Input: A = [1, 2, 3] 
Output: 10 

Approach: The Naive approach is to generate all possible subarrays, find their minimum and add them to the result. 
Efficient Approach: It is given that the array is sorted, so observe that the minimum element occurs N times, the second minimum occurs N-1 times, and so on… Let’s take an example:
 

arr[] = {1, 2, 3} 
Subarrays are {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3} 
Minimum of each subarray: {1}, {2}, {3}, {1}, {2}, {1}. 
where 
1 occurs 3 times i.e. n times when n = 3. 
2 occurs 2 times i.e. n-1 times when n = 3. 
3 occurs 1 times i.e. n-2 times when n = 3.

So, traverse the array and add the current element i.e. (arr[i]* n-i) to the sum.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum
// of minimum of all subarrays
int findMinSum(int arr[], int n)
{
 
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i] * (n - i);
 
    return sum;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 5, 7, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findMinSum(arr, n);
 
    return 0;
}


Java




// Java implementation of the above approach
class GfG
{
 
// Function to find the sum
// of minimum of all subarrays
static int findMinSum(int arr[], int n)
{
 
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i] * (n - i);
 
    return sum;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 3, 5, 7, 8 };
    int n = arr.length;
 
    System.out.println(findMinSum(arr, n));
}
}
 
// This code is contributed by Prerna Saini


Python3




# Python3 implementation of the
# above approach
 
# Function to find the sum
# of minimum of all subarrays
def findMinSum(arr, n):
    sum = 0
    for i in range(0, n):
        sum += arr[i] * (n - i)
    return sum
 
# Driver code
arr = [3, 5, 7, 8 ]
n = len(arr)
 
print(findMinSum(arr, n))
 
# This code has been contributed
# by 29AjayKumar


C#




// C# implementation of the above approach
using System;
 
class GfG
{
 
// Function to find the sum
// of minimum of all subarrays
static int findMinSum(int []arr, int n)
{
 
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i] * (n - i);
 
    return sum;
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 3, 5, 7, 8 };
    int n = arr.Length;
 
    Console.WriteLine(findMinSum(arr, n));
}
}
 
// This code is contributed by Arnab Kundu


PHP




<?php
 
// PHP implementation of the above approach
// Function to find the sum
// of minimum of all subarrays
function findMinSum($arr,$n)
{
 
    $sum = 0;
    for ($i = 0; $i < $n; $i++)
        $sum += $arr[$i] * ($n - $i);
 
    return $sum;
}
 
// Driver code
$arr = array( 3, 5, 7, 8 );
$n = count($arr);
 
echo findMinSum($arr, $n);
     
// This code is contributed by Arnab Kundu
?>


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to find the sum
// of minimum of all subarrays
function findMinSum(arr, n)
{
 
    var sum = 0;
    for (var i = 0; i < n; i++)
        sum += arr[i] * (n - i);
 
    return sum;
}
 
// Driver code
var arr = [ 3, 5, 7, 8 ];
var n = arr.length;
document.write( findMinSum(arr, n));
 
</script>


Output: 

49

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Note: To find the Sum of maximum element of all subarrays in a sorted array, just traverse the array in reverse order and apply the same formula for Sum.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments