Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AISubstring segment query & modification

Substring segment query & modification

Given a string S containing only uppercase English letters. You have to process Q queries of the given form:

  • 1 x: Print the maximum size of the segment [i, j] where 0 \le i \le x \le j < |S|              and substring S[i…j] contains only the letter S[x].
  • 2 x: change S[x] = ‘#’ .

Note: For both types of queries, S[x] will not contain the character ‘#’.

Examples:

Input: S = ‘AABBBCCCC’, queries = [[1 0], [2 1], [1 0], [2 2], [1 3]]
Output: 2 1 2
Explanation: Initially S = ‘AABBBCCCC’

  • query[0], longest continuous substring formed by S[0] is ‘AA’ of length 2.
  • query[1], S=’A#BBBCCCC’
  • query[2], longest continuous substring formed by S[0] is ‘A’ of length 1.
  • query[3], S=’A##BBCCCC’
  • query[4], longest continuous substring formed by S[3] is ‘BB’ of length 2.

Input: S = ‘XXYYY’, queries = [[1 3], [2 3], [1 2]]
Output: 3 1
Explanation: Initially S=’XXYYY’

  • query[0], longest continuous substring formed by S[3] is ‘YYY’ of length 3.
  • query[1], S = ‘XXY#Y’
  • query[2], longest continuous substring formed by s[2] is ‘Y’ of length 1.

Approach: To solve the problem follow the below idea:

We can use Binary Search on the ordered ranges formed by the consecutive similar letters, also Set data structure can be used to update those ranges efficiently.

Follow the steps to solve the problem:

  • Create an ordered set of pairs ‘st‘ to store the ranges of consecutive characters.
  • For each query of type 1 x:
    • Use Binary search to find the range [L, R] in which the current index x lies.
    • Simply print the range difference i.e.R-L+1 as the answer to the type 1 query.
  • For each query of type 2 x:
    • Delete the old range [L, R] in which the current index x lies.
    • Insert new ranges i.e. L to x-1 and x+1 to R, into our set ‘st‘.

Below is the implementation of the above algorithm:

C++




#include <bits/stdc++.h>
using namespace std;
 
void fn(string s, int n, vector<vector<int> > queries)
{
    // Set of pair to store the ranges
    set<pair<int, int> > st;
 
    // Storing the initial ranges of consecutive characters.
    for (int i = 0; i < n; i++) {
        int l = i;
        while (i + 1 < n && s[i] == s[i + 1]) {
            i++;
        }
        int r = i;
        st.insert({ l, r });
    }
 
    // Processint the queries
    for (auto e : queries) {
        int type = e[0];
        int index = e[1];
 
        // Solving query of type 1
        if (type == 1) {
 
            // Binary search on the valid range using
            // upperbound
            auto it = --st.upper_bound({ index, 1 << 30 });
            int left = (*it).first;
            int right = (*it).second;
            cout << right - left + 1 << endl;
        }
 
        // Solving the query of type 2
        else {
 
            // Binary search on the valid range using
            // upperbound
            auto it = --st.upper_bound({ index, 1 << 30 });
            int left = (*it).first;
            int right = (*it).second;
 
            // Erase the old range
            st.erase(it);
 
            // Inserting the new ranges.
            if (left != index)
                st.insert({ left, index - 1 });
            if (right != index)
                st.insert({ index + 1, right });
        }
    }
}
int main()
{
    string s = "AABBBCCCC";
    int n = s.size();
    vector<vector<int> > queries = {
        { 1, 0 }, { 2, 1 }, { 1, 0 }, { 2, 2 }, { 1, 3 }
    };
fn(s, n, queries);
}


Java




// Java Program to Implement above approach
import java.util.*;
 
public class Main {
 
    static void fn(String s, int n, List<List<Integer>> queries) {
        // Set of pair to store the ranges
        TreeSet<Pair<Integer, Integer>> st = new TreeSet<>();
 
        // Storing the initial ranges of consecutive characters.
        for (int i = 0; i < n; i++) {
            int l = i;
            while (i + 1 < n && s.charAt(i) == s.charAt(i + 1)) {
                i++;
            }
            int r = i;
            st.add(new Pair<>(l, r));
        }
 
        // Processing the queries
        for (List<Integer> e : queries) {
            int type = e.get(0);
            int index = e.get(1);
 
            // Solving query of type 1
            if (type == 1) {
                // Binary search on the valid range using floor
                Pair<Integer, Integer> queryPair = new Pair<>(index, 1 << 30);
                Pair<Integer, Integer> it = st.floor(queryPair);
                int left = it.first;
                int right = it.second;
                System.out.println(right - left + 1);
            }
 
            // Solving the query of type 2
            else {
                // Binary search on the valid range using floor
                Pair<Integer, Integer> queryPair = new Pair<>(index, 1 << 30);
                Pair<Integer, Integer> it = st.floor(queryPair);
                int left = it.first;
                int right = it.second;
 
                // Erase the old range
                st.remove(it);
 
                // Inserting the new ranges.
                if (left != index)
                    st.add(new Pair<>(left, index - 1));
                if (right != index)
                    st.add(new Pair<>(index + 1, right));
            }
        }
    }
 
    public static void main(String[] args) {
        String s = "AABBBCCCC";
        int n = s.length();
        List<List<Integer>> queries = new ArrayList<>();
        queries.add(Arrays.asList(1, 0));
        queries.add(Arrays.asList(2, 1));
        queries.add(Arrays.asList(1, 0));
        queries.add(Arrays.asList(2, 2));
        queries.add(Arrays.asList(1, 3));
 
        fn(s, n, queries);
    }
 
    static class Pair<K, V> implements Comparable<Pair<K, V>> {
        K first;
        V second;
 
        Pair(K first, V second) {
            this.first = first;
            this.second = second;
        }
 
        @Override
        public int compareTo(Pair<K, V> other) {
            int cmp = ((Comparable<K>) first).compareTo(other.first);
            return cmp != 0 ? cmp : ((Comparable<V>) second).compareTo(other.second);
        }
    }
}


Python3




def fn(s, queries):
    # List of pairs to store the ranges
    st = []
 
    # Storing the initial ranges of consecutive characters.
    n = len(s)
    i = 0
    while i < n:
        l = i
        while i + 1 < n and s[i] == s[i + 1]:
            i += 1
        r = i
        st.append((l, r))
        i += 1
 
    # Processing the queries
    for e in queries:
        type = e[0]
        index = e[1]
 
        # Solving query of type 1
        if type == 1:
            count = 0
            for l, r in st:
                if l <= index <= r:
                    count += (r - l + 1)
            print(count)
 
        # Solving the query of type 2
        else:
            i = 0
            while i < len(st):
                left, right = st[i]
                if left <= index <= right:
                    break
                i += 1
             
            if i < len(st):
                st.pop(i)
                if left != index:
                    st.insert(i, (left, index - 1))
                if right != index:
                    st.insert(i + 1, (index + 1, right))
 
if __name__ == "__main__":
    s = "AABBBCCCC"
    queries = [
        (1, 0),
        (2, 1),
        (1, 0),
        (2, 2),
        (1, 3)
    ]
 
    fn(s, queries)


C#




// C# Program to Implement above approach
 
using System;
using System.Collections.Generic;
 
class Program
{
    static void fn(string s, List<List<int>> queries)
    {
        // Set of pairs to store the ranges
        HashSet<Tuple<int, int>> st = new HashSet<Tuple<int, int>>();
 
        // Storing the initial ranges of consecutive characters.
        for (int i = 0; i < s.Length; i++)
        {
            int l = i;
            while (i + 1 < s.Length && s[i] == s[i + 1])
            {
                i++;
            }
            int r = i;
            st.Add(new Tuple<int, int>(l, r));
        }
 
        // Processing the queries
        foreach (var e in queries)
        {
            int type = e[0];
            int index = e[1];
 
            // Solving query of type 1
            if (type == 1)
            {
                // Find the first range with its right bound greater than or equal to the index
                Tuple<int, int> range = null;
                foreach (var pair in st)
                {
                    if (pair.Item2 >= index)
                    {
                        range = pair;
                        break;
                    }
                }
 
                if (range != null)
                {
                    int left = range.Item1;
                    int right = range.Item2;
                    Console.WriteLine(right - left + 1);
                }
            }
 
            // Solving the query of type 2
            else
            {
                // Find the range that contains the index
                Tuple<int, int> range = null;
                foreach (var pair in st)
                {
                    if (pair.Item1 <= index && index <= pair.Item2)
                    {
                        range = pair;
                        break;
                    }
                }
 
                if (range != null)
                {
                    int left = range.Item1;
                    int right = range.Item2;
 
                    // Remove the old range
                    st.Remove(range);
 
                    // Insert the new ranges
                    if (left != index)
                    {
                        st.Add(new Tuple<int, int>(left, index - 1));
                    }
                    if (right != index)
                    {
                        st.Add(new Tuple<int, int>(index + 1, right));
                    }
                }
            }
        }
    }
 
    static void Main(string[] args)
    {
        string s = "AABBBCCCC";
        List<List<int>> queries = new List<List<int>>
        {
            new List<int> { 1, 0 },
            new List<int> { 2, 1 },
            new List<int> { 1, 0 },
            new List<int> { 2, 2 },
            new List<int> { 1, 3 }
        };
        fn(s, queries);
    }
}


Javascript




class Pair {
    constructor(first, second) {
        this.first = first;
        this.second = second;
    }
 
    compareTo(other) {
        const cmp = this.first - other.first;
        return cmp !== 0 ? cmp : this.second - other.second;
    }
}
 
function fn(s, n, queries) {
    // Set of pairs to store the ranges
    const st = new Set();
 
    // Storing the initial ranges of consecutive characters
    for (let i = 0; i < n; i++) {
        let l = i;
        while (i + 1 < n && s.charAt(i) === s.charAt(i + 1)) {
            i++;
        }
        let r = i;
        st.add(new Pair(l, r));
    }
 
    // Processing the queries
    for (const e of queries) {
        const type = e[0];
        const index = e[1];
 
        // Solving query of type 1
        if (type === 1) {
            // Binary search on the valid range using floor
            let left = -1;
            let right = -1;
            for (const it of st) {
                if (it.first <= index && it.second >= index) {
                    left = it.first;
                    right = it.second;
                    break;
                }
            }
            console.log(right - left + 1);
        }
 
        // Solving the query of type 2
        else {
            // Binary search on the valid range using floor
            let left = -1;
            let right = -1;
            for (const it of st) {
                if (it.first <= index && it.second >= index) {
                    left = it.first;
                    right = it.second;
                    st.delete(it);
                    break;
                }
            }
 
            // Inserting the new ranges
            if (left !== index) {
                st.add(new Pair(left, index - 1));
            }
            if (right !== index) {
                st.add(new Pair(index + 1, right));
            }
        }
    }
}
 
const s = "AABBBCCCC";
const n = s.length;
const queries = [
    [1, 0],
    [2, 1],
    [1, 0],
    [2, 2],
    [1, 3],
];
 
fn(s, n, queries);


Output

2
1
2














Time Complexity: O(N.logN + Q.logN), where N is the string size and Q is the number of queries.
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
19 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments