Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISubmatrix of given size with maximum 1’s

Submatrix of given size with maximum 1’s

Given a binary matrix mat[][] and an integer K, the task is to find the submatrix of size K*K such that it contains maximum number of 1’s in the matrix.

Examples: 

Input: mat[][] = {{1, 0, 1}, {1, 1, 0}, {1, 0, 0}}, K = 2 
Output:
Explanation: 
In the given matrix, there are 4 sub-matrix of order 2*2, 
|1 0| |0 1| |1 1| |1 0| 
|1 1|, |1 0|, |1 0|, |0 0| 
Out of these sub-matrix, two matrix contains 3, 1’s.

Input: mat[][] = {{1, 0}, {0, 1}}, K = 1 
Output:
Explanation: 
In the given matrix, there are 4 sub-matrix of order 1*1, 
|1|, |0|, |1|, |0| 
Out of these sub-matrix, two matrix contains 1, 1’s. 

Approach: The idea is to use the sliding window technique to solve this problem, In this technique, we generally compute the value of one window and then slide the window one-by-one to compute the solution for every window of size K.
To compute the maximum 1’s submatrix, count the number of 1’s in the row for every possible window of size K using the sliding window technique and store the counts of the 1’s in the form of a matrix. 

For Example: 

Let the matrix be {{1,0,1}, {1, 1, 0}} and K = 2

For Row 1 -
Subarray 1: (1, 0), Count of 1 = 1
Subarray 2: (0, 1), Count of 1 = 1

For Row 2 -
Subarray 1: (1, 1), Count of 1 = 2
Subarray 2: (1, 0), Count of 1 = 1

Then the final matrix for count of 1's will be -
[ 1, 1 ]
[ 2, 1 ]

Similarly, apply the sliding window technique on every column on this matrix, to compute the count of 1’s in every possible sub-matrix and take the maximum out of those counts.

Below is the implementation of the above approach: 

C++




// C++ implementation to find the
// maximum count of 1's in
// submatrix of order K
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum
// count of 1's in the
// submatrix of order K
int maxCount(vector<vector<int>> &mat, int k) {
 
    int n = mat.size();
    int m = mat[0].size();
    vector<vector<int>> a;
 
    // Loop to find the count of 1's
    // in every possible windows
    // of rows of matrix
    for (int e = 0; e < n; ++e){
        vector<int> s = mat[e];
        vector<int> q;
        int    c = 0;
         
        // Loop to find the count of
        // 1's in the first window
        int i;
        for (i = 0; i < k; ++i)
            if(s[i] == 1)
                c += 1;
 
        q.push_back(c);
        int p = s[0];
         
        // Loop to find the count of
        // 1's in the remaining windows
        for (int j = i + 1; j < m; ++j) {
            if(s[j] == 1)
                c+= 1;
            if(p == 1)
                c-= 1;
            q.push_back(c);
            p = s[j-k + 1];
        }
        a.push_back(q);
    }
 
    vector<vector<int>> b;
    int max = 0;
     
    // Loop to find the count of 1's
    // in every possible submatrix
    for (int i = 0; i < a[0].size(); ++i) {
        int c = 0;
        int p = a[0][i];
         
        // Loop to find the count of
        // 1's in the first window
        int j;
        for (j = 0; j < k; ++j) {
            c+= a[j][i];
        }
        vector<int> q;
        if (c>max)
            max = c;
        q.push_back(c);
         
        // Loop to find the count of
        // 1's in the remaining windows
        for (int l = j + 1; j < n; ++j) {
            c+= a[l][i];
            c-= p;
            p = a[l-k + 1][i];
            q.push_back(c);
            if (c > max)
                max = c;
        }
 
        b.push_back(q);
    }
 
    return max;
}
 
// Driver code
int main()
{
    vector<vector<int>> mat = {{1, 0, 1}, {1, 1, 0}, {0, 1, 0}};
    int k = 3;
     
    // Function call
    cout<< maxCount(mat, k);
 
    return 0;
}


Java




// Java implementation to find the
// maximum count of 1's in
// submatrix of order K
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to find the maximum
// count of 1's in the
// submatrix of order K
static int maxCount(ArrayList<ArrayList<Integer> > mat, int k)
{
    int n = mat.size();
    int m = mat.get(0).size();
    ArrayList<ArrayList<Integer>> a = new ArrayList<ArrayList<Integer>>();
     
    // Loop to find the count of 1's
    // in every possible windows
    // of rows of matrix
    for(int e = 0; e < n; ++e)
    {
        ArrayList<Integer> s = mat.get(e);
        ArrayList<Integer> q = new ArrayList<Integer>();
        int c = 0;
         
        // Loop to find the count of
        // 1's in the first window
        int i;
        for(i = 0; i < k; ++i)
        {
            if (s.get(i) == 1)
            {
                c += 1;
            }
        }
        q.add(c);
        int p = s.get(0);
         
        // Loop to find the count of
        // 1's in the remaining windows
        for(int j = i + 1; j < m; ++j)
        {
            if (s.get(j) == 1)
            {
                c += 1;
            }
            if (p == 1)
            {
                c -= 1;
            }
            q.add(c);
            p = s.get(j - k + 1);
        }
        a.add(q);
    }
     
    ArrayList<ArrayList<Integer>> b = new ArrayList<ArrayList<Integer>>();
    int max = 0;
     
    // Loop to find the count of 1's
    // in every possible submatrix
    for(int i = 0; i < a.get(0).size(); ++i)
    {
        int c = 0;
        int p = a.get(0).get(i);
         
        // Loop to find the count of
        // 1's in the first window
        int j;
        for(j = 0; j < k; ++j)
        {
            c += a.get(j).get(i);
        }
        ArrayList<Integer> q = new ArrayList<Integer>();
         
        if (c > max)
        {
            max = c;
        }
        q.add(c);
         
        // Loop to find the count of
        // 1's in the remaining windows
        for(int l = j + 1; j < n; ++j)
        {
             
            c += a.get(l).get(i);
            c -= p;
            p = a.get(l - k + 1).get(i);
            q.add(c);
             
            if (c > max)
            {
                max = c;
            }
        }
        b.add(q);
    }
    return max;
}
 
// Driver code
public static void main(String[] args)
{
    ArrayList<ArrayList<Integer>> mat = new ArrayList<ArrayList<Integer>>();
    mat.add(new ArrayList<Integer>(Arrays.asList(1, 0, 1)));
    mat.add(new ArrayList<Integer>(Arrays.asList(1, 1, 0)));
    mat.add(new ArrayList<Integer>(Arrays.asList(0, 1, 0)));
    int k = 3;
     
    // Function call
    System.out.println(maxCount(mat, k));
}
}
 
// This code is contributed by avanitrachhadiya2155


Python3




# Python3 implementation to find the
# maximum count of 1's in
# submatrix of order K
 
# Function to find the maximum
# count of 1's in the
# submatrix of order K
def maxCount(mat, k):
    n, m = len(mat), len(mat[0])
    a =[]
     
    # Loop to find the count of 1's
    # in every possible windows
    # of rows of matrix
    for e in range(n):
        s = mat[e]
        q =[]
        c = 0
         
        # Loop to find the count of
        # 1's in the first window
        for i in range(k):
            if s[i] == 1:
                c += 1
        q.append(c)
        p = s[0]
         
        # Loop to find the count of
        # 1's in the remaining windows
        for j in range(i + 1, m):
            if s[j]==1:
                c+= 1
            if p ==1:
                c-= 1
            q.append(c)
            p = s[j-k + 1]
        a.append(q)
    b =[]
    max = 0
     
    # Loop to find the count of 1's
    # in every possible submatrix
    for i in range(len(a[0])):
        c = 0
        p = a[0][i]
         
        # Loop to find the count of
        # 1's in the first window
        for j in range(k):
            c+= a[j][i]
        q =[]
        if c>max:
            max = c
        q.append(c)
         
        # Loop to find the count of
        # 1's in the remaining windows
        for l in range(j + 1, n):
            c+= a[l][i]
            c-= p
            p = a[l-k + 1][i]
            q.append(c)
            if c > max:
                max = c
        b.append(q)
    return max
     
# Driver Code
if __name__ == "__main__":
    mat = [[1, 0, 1], [1, 1, 0], [0, 1, 0]]
    k = 3
     
    # Function call
    print(maxCount(mat, k))


C#




// C# implementation to find the
// maximum count of 1's in
// submatrix of order K
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to find the maximum
// count of 1's in the
// submatrix of order K
static int maxCount(List<List<int>> mat, int k)
{
    int n = mat.Count;
    int m = mat[0].Count;
    List<List<int>> a = new List<List<int>>();
     
    // Loop to find the count of 1's
    // in every possible windows
    // of rows of matrix
    for(int e = 0; e < n; ++e)
    {
        List<int> s = mat[e];
        List<int> q = new List<int>();
        int c = 0;
         
        // Loop to find the count of
        // 1's in the first window
        int i;
         
        for(i = 0; i < k; ++i)
        {
            if (s[i] == 1)
            {
                c++;
            }
        }
        q.Add(c);
        int p = s[0];
         
        // Loop to find the count of
        // 1's in the remaining windows
        for(int j = i + 1; j < m; ++j)
        {
            if (s[j] == 1)
            {
                c++;
            }
            if (p == 1)
            {
                c--;
            }
            q.Add(c);
            p = s[j - k + 1];
        }
        a.Add(q);
    }
    List<List<int>> b = new List<List<int>>();
    int max = 0;
     
    // Loop to find the count of 1's
    // in every possible submatrix
    for(int i = 0; i < a[0].Count; ++i)
    {
        int c = 0;
        int p = a[0][i];
         
        // Loop to find the count of
        // 1's in the first window
        int j;
        for(j = 0; j < k; ++j)
        {
            c += a[j][i];
        }
         
        List<int> q = new List<int>();
         
        if (c > max)
        {
            max = c;
        }
        q.Add(c);
         
        // Loop to find the count of
        // 1's in the remaining windows
        for(int l = j + 1; j < n; ++j)
        {
            c += a[l][i];
            c -= p;
            p = a[l - k + 1][i];
            q.Add(c);
             
            if (c > max)
            {
                max = c;
            }
        }
        b.Add(q);
    }
    return max;
}
 
// Driver code
static public void Main()
{
    List<List<int>> mat = new List<List<int>>();
    mat.Add(new List<int>(){1, 0, 1});
    mat.Add(new List<int>(){1, 1, 0});
    mat.Add(new List<int>(){0, 1, 0});
    int k = 3;
     
    // Function call
    Console.WriteLine(maxCount(mat, k));
}
}
 
// This code is contributed by rag2127


Javascript




<script>
// Javascript implementation to find the
// maximum count of 1's in
// submatrix of order K
 
// Function to find the maximum
// count of 1's in the
// submatrix of order K
function maxCount(mat,k)
{
    let n = mat.length;
    let m = mat[0].length;
    let a = [];
      
    // Loop to find the count of 1's
    // in every possible windows
    // of rows of matrix
    for(let e = 0; e < n; ++e)
    {
        let s = mat[e];
        let q = [];
        let c = 0;
          
        // Loop to find the count of
        // 1's in the first window
        let i;
        for(i = 0; i < k; ++i)
        {
            if (s[i] == 1)
            {
                c += 1;
            }
        }
        q.push(c);
        let p = s[0];
          
        // Loop to find the count of
        // 1's in the remaining windows
        for(let j = i + 1; j < m; ++j)
        {
            if (s[j] == 1)
            {
                c += 1;
            }
            if (p == 1)
            {
                c -= 1;
            }
            q.push(c);
            p = s[j - k + 1];
        }
        a.push(q);
    }
      
    let b = [];
    let max = 0;
      
    // Loop to find the count of 1's
    // in every possible submatrix
    for(let i = 0; i < a[0].length; ++i)
    {
        let c = 0;
        let p = a[0][i];
          
        // Loop to find the count of
        // 1's in the first window
        let j;
        for(j = 0; j < k; ++j)
        {
            c += a[j][i];
        }
        let q = [];
          
        if (c > max)
        {
            max = c;
        }
        q.push(c);
          
        // Loop to find the count of
        // 1's in the remaining windows
        for(let l = j + 1; j < n; ++j)
        {
              
            c += a[l][i];
            c -= p;
            p = a[l - k + 1][i];
            q.push(c);
              
            if (c > max)
            {
                max = c;
            }
        }
        b.push(q);
    }
    return max;
}
 
// Driver code
let mat=[[1, 0, 1],[1, 1, 0],[0, 1, 0]];
let k = 3;
 
// Function call
document.write(maxCount(mat, k));
 
// This code is contributed by unknown2108
</script>


Output: 

5

 

Performance Analysis: 

  • Time Complexity: As in the above approach, there are two loops which takes O(N*M) time, Hence the Time Complexity will be O(N*M).
  • Space Complexity: As in the above approach, there is extra space used, Hence the space complexity will be O(N).

Approach 2: [Dynamic Programming method] In this technique, we compute the dp[][] matrix using given mat[][] array.In dp[][] array we compute number of 1’s till the index (i,j) using previous dp[][] value and store it in dp[i][j] .

Algorithm : 

1) Construct a dp[][] matrix and assign all elements to 0

    initial dp[0][0] = mat[0][0]

    a) compute first row and column of the dp matrix:

        i) for first row:

            dp[0][i] = dp[0][i-1] + mat[0][i]

        ii) for first column:

            dp[i][0] = dp[i-1][0] + mat[i][0]

    b) now compute remaining dp matrix from (1,1) to (n,m):

        dp[i][j] = mat[i][j] + dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1]

2)now, we find the maximum 1's in k X k sub matrix:

    a) initially we assign max = dp[k-1][k-1]

    b) now first we have to check maximum for k-1 row and k-1 column:

        i) for k-1 row:

            if dp[k-1][j] - dp[k-1][j-k] > max:

                max = dp[k-1][j] - dp[k-1][j-k]

        ii) for k-1 column:

            if dp[i][k-1] - dp[i-k][k-1] > max:

                max = dp[i][k-1] - dp[i-k][k-1]

    c) now, we check max for (k to n) row and (k to m) column:

        for i from k to n-1:

            for j from k to m-1:

                if dp[i][j] + dp[i-k][j-k] - dp[i-k][j] - dp[i][j-k] > max:

                    max = dp[i][j] + dp[i-k][j-k] - dp[i-k][j] - dp[i][j-k]

 now just return the max value.

Below is the implementation of the above approach:

C++14




// C++14 approach
#include <bits/stdc++.h>
using namespace std;
 
int findMaxK(vector<vector<int>> dp,
             int k, int n, int m)
{
     
    // Assign first kXk matrix initial
    // value as max
    int max_ = dp[k - 1][k - 1];
     
    for(int i = k; i < n; i++)
    {
        int su = dp[i - k][k - 1];
            if (max_ < su)
                max_ = su;
    }
    for(int j = k; j < m; j++)
    {
        int su = dp[k - 1][j - k];
            if (max_< su)
                max_ = su;
    }
    for(int i = k; i < n; i++)
    {
        for(int j = k; j < m; j++)
        {
            int su = dp[i][j] +
                     dp[i - k][j - k] -
                     dp[i - k][j] -
                     dp[i][j - k];
                      
            if( max_ < su)
                max_ = su;
        }
    }
    return max_;
}
 
vector<vector<int>> buildDPdp(vector<vector<int>> mat,
                              int k, int n, int m)
{
     
    // Assign mXn dp list to 0
    vector<vector<int>> dp(n, vector<int>(m, 0));
 
    // Assign initial starting value
    dp[0][0] = mat[0][0];
 
    for(int i = 1; i < m; i++)
        dp[0][i] += (dp[0][i - 1] + mat[0][i]);
 
    for(int i = 1; i < n; i++)
        dp[i][0] += (dp[i - 1][0] + mat[i][0]);
 
    for(int i = 1; i < n; i++)
        for(int j = 1; j < m; j++)
            dp[i][j] = dp[i - 1][j] +
                       dp[i][j - 1] +
                       mat[i][j] -
                       dp[i - 1][j - 1];
 
    return dp;
}
 
int maxOneInK(vector<vector<int>> mat, int k)
{
     
    // n is columns
    int n = mat.size();
 
    // m is rows
    int m = mat[0].size();
 
    // Build dp list
    vector<vector<int>> dp = buildDPdp(
        mat, k, n, m);
 
    // Call the function and return its value
    return findMaxK(dp, k, n, m);
}
 
// Driver Code
int main()
{
     
    // mXn matrix
    vector<vector<int>> mat = { { 1, 0, 1 },
                                { 1, 1, 0 },
                                { 0, 1, 0 } };
 
    int k = 3;
 
    // Calling function
    cout << maxOneInK(mat, k);
 
    return 0;
}
 
// This code is contributed by mohit kumar 29


Java




/*package whatever //do not write package name here */
 
import java.io.*;
 
class GFG {
     
    static int findMaxK(int[][] dp,
                     int k, int n, int m)
    {
          
        // Assign first kXk matrix initial
        // value as max
        int max_ = dp[k - 1][k - 1];
          
        for(int i = k; i < n; i++)
        {
            int su = dp[i - k][k - 1];
                if (max_ < su)
                    max_ = su;
        }
        for(int j = k; j < m; j++)
        {
            int su = dp[k - 1][j - k];
                if (max_< su)
                    max_ = su;
        }
        for(int i = k; i < n; i++)
        {
            for(int j = k; j < m; j++)
            {
                int su = dp[i][j] +
                         dp[i - k][j - k] -
                         dp[i - k][j] -
                         dp[i][j - k];
                           
                if( max_ < su)
                    max_ = su;
            }
        }
        return max_;
    }
     
    static int[][] buildDPdp(int[][] mat,
                              int k, int n, int m)
    {
          
        // Assign mXn dp list to 0
        int[][] dp=new int[n][m];
      
        // Assign initial starting value
        dp[0][0] = mat[0][0];
      
        for(int i = 1; i < m; i++)
            dp[0][i] += (dp[0][i - 1] + mat[0][i]);
      
        for(int i = 1; i < n; i++)
            dp[i][0] += (dp[i - 1][0] + mat[i][0]);
      
        for(int i = 1; i < n; i++)
            for(int j = 1; j < m; j++)
                dp[i][j] = dp[i - 1][j] +
                           dp[i][j - 1] +
                           mat[i][j] -
                           dp[i - 1][j - 1];
      
        return dp;
    }
     
    static int maxOneInK(int[][] mat, int k)
    {
          
        // n is columns
        int n = mat.length;
      
        // m is rows
        int m = mat[0].length;
      
        // Build dp list
        int[][] dp = buildDPdp(
            mat, k, n, m);
      
        // Call the function and return its value
        return findMaxK(dp, k, n, m);
    }
 
  // Driver code
    public static void main (String[] args)
    {
       
        // mXn matrix
        int[][] mat = { { 1, 0, 1 },
                                    { 1, 1, 0 },
                                    { 0, 1, 0 } };
      
        int k = 3;
      
        // Calling function
        System.out.println( maxOneInK(mat, k));
      
         
    }
}
 
// This code is contributed by ab2127.


Python3




#python3 approach
 
def findMaxK(dp,k,n,m):
     
    # assign first kXk matrix initial value as max
    max_ = dp[k-1][k-1]
     
     
    for i in range(k,n):
        su = dp[i-k][k-1]
        if max_ < su:
            max_ = su
     
    for j in range(k,m):
        su = dp[k-1][i-k]
        if max_< su:
            max_ = su
             
    for i in range(k,n):
        for j in range(k,m):
            su = dp[i][j] + dp[i-k][j-k] - dp[i-k][j] - dp[i][j-k]
            if max_ < su:
                max_ = su
             
    return max_
     
def buildDPdp(mat,k,n,m):
     
    # assign mXn dp list to 0
    dp = [[0 for i in range(m)] for j in range(n)]
     
    # assign initial starting value
    dp[0][0] = mat[0][0]
     
    for i in range(1,m):
        dp[0][i] += (dp[0][i-1]+mat[0][i])
     
    for i in range(1,n):
        dp[i][0] += (dp[i-1][0]+mat[i][0])
     
     
    for i in range(1,n):
        for j in range(1,m):
            dp[i][j] = dp[i-1][j] + dp[i][j-1] + mat[i][j] - dp[i-1][j-1]
 
    return dp
 
def maxOneInK(mat,k):
     
    # n is columns
    n = len(mat)
     
    # m is rows
    m = len(mat[0])
     
    #build dp list
    dp = buildDPdp(mat,k,n,m)
     
    # call the function and return its value
    return findMaxK(dp,k,n,m)
     
     
         
 
def main():
    # mXn matrix
    mat = [[1, 0, 1], [1, 1, 0], [0, 1, 0]]
     
    k = 3
     
    #callind function
    print(maxOneInK(mat,k))
 
#driver code
main()
 
 
#This code is contributed by Tokir Manva


Javascript




// Javascript approach
function findMaxK(dp, k, n, m)
{
 
    // Assign first kXk matrix initial
    // value as max
    let max_ = dp[k - 1][k - 1];
      
    for(let i = k; i < n; i++)
    {
        let su = dp[i - k][k - 1];
            if (max_ < su)
                max_ = su;
    }
    for(let j = k; j < m; j++)
    {
        let su = dp[k - 1][j - k];
            if (max_< su)
                max_ = su;
    }
    for(let i = k; i < n; i++)
    {
        for(let j = k; j < m; j++)
        {
            let su = dp[i][j] +
                     dp[i - k][j - k] -
                     dp[i - k][j] -
                     dp[i][j - k];
                       
            if( max_ < su)
                max_ = su;
        }
    }
    return max_;
}
 
function buildDPdp( mat,k,n,m)
{
    // Assign mXn dp list to 0
    let dp=new Array(n);
    for(let i=0;i<n;i++)
    {
        dp[i]=new Array(m);
        for(let j=0;j<m;j++)
        {
            dp[i][j]=0;
        }
    }
  
    // Assign initial starting value
    dp[0][0] = mat[0][0];
  
    for(let i = 1; i < m; i++)
        dp[0][i] += (dp[0][i - 1] + mat[0][i]);
  
    for(let i = 1; i < n; i++)
        dp[i][0] += (dp[i - 1][0] + mat[i][0]);
  
    for(let i = 1; i < n; i++)
        for(let j = 1; j < m; j++)
            dp[i][j] = dp[i - 1][j] +
                       dp[i][j - 1] +
                       mat[i][j] -
                       dp[i - 1][j - 1];
  
    return dp;
}
 
function maxOneInK(mat,k)
{
    // n is columns
    let n = mat.length;
  
    // m is rows
    let m = mat[0].length;
  
    // Build dp list
    let dp = buildDPdp(
        mat, k, n, m);
  
    // Call the function and return its value
    return findMaxK(dp, k, n, m);
}
 
// Driver Code
 
// mXn matrix
let mat = [[ 1, 0, 1 ],[ 1, 1, 0 ],
                                [ 0, 1, 0 ]];
  
    let k = 3;
  
    // Calling function
    console.log(maxOneInK(mat, k));
  
// This code is contributed by patel2127


C#




// C# code to implement the above approach
using System;
using System.Collections.Generic;
 
class Program {
    static int FindMaxK(List<List<int> > dp, int k, int n,
                        int m)
    {
        // Assign first kXk matrix initial
        // value as max
        int max_ = dp[k - 1][k - 1];
 
        for (int i = k; i < n; i++) {
            int su = dp[i - k][k - 1];
            if (max_ < su)
                max_ = su;
        }
        for (int j = k; j < m; j++) {
            int su = dp[k - 1][j - k];
            if (max_ < su)
                max_ = su;
        }
        for (int i = k; i < n; i++) {
            for (int j = k; j < m; j++) {
                int su = dp[i][j] + dp[i - k][j - k]
                         - dp[i - k][j] - dp[i][j - k];
 
                if (max_ < su)
                    max_ = su;
            }
        }
        return max_;
    }
 
    static List<List<int> > BuildDPdp(List<List<int> > mat,
                                      int k, int n, int m)
    {
        // Assign mXn dp list to 0
 
        List<List<int> > dp = new List<List<int> >();
        for (int i = 0; i < n; i++)
            dp.Add(new List<int>(new int[m]));
 
        dp[0][0] = mat[0][0];
 
        for (int i = 1; i < m; i++)
            dp[0][i] += (dp[0][i - 1] + mat[0][i]);
 
        for (int i = 1; i < n; i++)
            dp[i][0] += (dp[i - 1][0] + mat[i][0]);
 
        for (int i = 1; i < n; i++)
            for (int j = 1; j < m; j++)
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
                           + mat[i][j] - dp[i - 1][j - 1];
 
        return dp;
    }
 
    // Driver code
    static int MaxOneInK(List<List<int> > mat, int k)
    { // n is columns
 
        int n = mat.Count;
 
        // m is rows
        int m = mat[0].Count;
 
        // Build dp list
        List<List<int> > dp = BuildDPdp(mat, k, n, m);
 
        // Call the function and return its value
        return FindMaxK(dp, k, n, m);
    }
 
    static void Main(string[] args)
    {
        // mXn matrix
        List<List<int> > mat = new List<List<int> >() {
            new List<int>() { 1, 0, 1 }, new List<int>() {
                1, 1, 0
            }, new List<int>() { 0, 1, 0 }
        };
 
        int k = 3;
 
        // Calling function
 
        Console.WriteLine(MaxOneInK(mat, k));
    }
}
 
// This code is contributed by Princekumaras


Output: 

5

 

Performance Analysis: 

  • Time Complexity: As in the above Dynamic program approach we have to calculate N X M dp matrix which takes O(N*M) time, Hence the Time Complexity will be O(N*M).
  • Space Complexity: As in the above approach, there is extra space used for making dp N X M matrix, Hence the space complexity will be O(N*M).

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments