Monday, January 6, 2025
Google search engine
HomeData Modelling & AISplit array into K Subarrays to minimize sum of difference between min...

Split array into K Subarrays to minimize sum of difference between min and max

Given a sorted array arr[] of size N and integer K, the task is to split the array into K non-empty subarrays such that the sum of the difference between the maximum element and the minimum element of each subarray is minimized. 

Note: Every element of the array must be included in one subarray and each subarray should be non-empty.

Examples:

Input: arr[] = {5, 9, 16, 17, 24, 43}, K = 3 
Output: 12
Explanation: {5, 9}, {16, 17, 24}, {43} are the three subarrays because 
(9-5) + (24-16) + (43-43) = 12 is minimum of all possible subarrays.

Input: arr[] = [5, 7, 8, 8, 11, 14, 22}, K = 3
Output: 13
Explanation: {5, 7}, {8, 8}, {11, 14, 22}. So, (7 – 5) + (8 – 8) + (22 – 11) = 13  
The given array of length 5 cannot be split into subsets of 4. 

Approach: The problem can be solved based on the following idea:

We have to choose K-1 indexes from the array to form K subarrays.

If N is the length of the array and suppose we have chosen K-1 indices (i.e.  a < b < . . . < c) then the required sum of K-subarrays will be 
(arr[a] – arr[0]) + (arr[b] – arr[a+1]) + . . . + (arr – arr[b+1]) + (arr[N-1] – arr).

On rearranging: (arr[N-1] – arr[0]) +(arr[a] – arr[a+1]) + (arr[b] – arr[b+1]) + . . . + (arr – arr)).

So, initially answer is  sum = arr[N-1] – arr[0] and to minimize the answer add K – 1 minimum pairs to sum.

Follow the below steps to implement the idea:

  • Create an array and store the difference between adjacent elements.
  • Sort the difference array.
  • Pick the first K elements from the array.
  • Add these values to the difference between arr[N-1] and arr[0].

Below is the implementation of the above approach:  

C++14




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find  minimum sum of
// difference between the maximum
// and the minimum element of each subarray
int minimumSum(int arr[], int n, int k)
{
    // Calculate the difference
    // between the adjacent elements
    // and store it in diff array
    int diff[n - 1];
 
    for (int i = 0; i < n - 1; i++)
        diff[i] = (arr[i] - arr[i + 1]);
 
    sort(diff, diff + n - 1);
 
    int sum = arr[n - 1] - arr[0];
 
    for (int i = 0; i < k - 1; i++)
        sum += diff[i];
 
    // Return the required sum
    return sum;
}
 
// Driver code
int main()
{
    int arr[] = { 5, 9, 16, 17, 24, 43 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
 
    // Function call
    cout << minimumSum(arr, N, K);
    return 0;
}


Java




// Java code to implement the approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to find  minimum sum of
    // difference between the maximum
    // and the minimum element of each subarray
    static int minimumSum(int arr[], int n, int k)
    {
        // Calculate the difference
        // between the adjacent elements
        // and store it in diff array
        int[] diff = new int[n - 1];
 
        for (int i = 0; i < n - 1; i++)
            diff[i] = (arr[i] - arr[i + 1]);
 
        Arrays.sort(diff);
 
        int sum = arr[n - 1] - arr[0];
 
        for (int i = 0; i < k - 1; i++)
            sum += diff[i];
 
        // Return the required sum
        return sum;
    }
 
    public static void main(String[] args)
    {
        int arr[] = { 5, 9, 16, 17, 24, 43 };
        int N = arr.length;
        int K = 3;
 
        // Function call
        System.out.print(minimumSum(arr, N, K));
    }
}
 
// This code is contributed by lokeshmvs21.


Python3




# Python3 code to implement the approach
 
# Function to find  minimum sum of
# difference between the maximum
# and the minimum element of each subarray
def minimumSum(arr, n, k) :
     
    # Calculate the difference
    # between the adjacent elements
    # and store it in diff array
    diff = [0] * (n - 1)
 
    for i in range(n-1):
        diff[i] = (arr[i] - arr[i + 1])
 
    diff.sort()
 
    sum = arr[n - 1] - arr[0]
 
    for i in range(k-1):
        sum += diff[i]
 
    # Return the required sum
    return sum
 
# Driver code
if __name__ == "__main__":
     
    arr = [ 5, 9, 16, 17, 24, 43 ]
    N = len(arr)
    K = 3
 
    # Function call
    print(minimumSum(arr, N, K))
 
    # This code is contributed by sanjoy_62.


C#




// C# code to implement the approach
using System;
 
public class GFG {
    // Function to find  minimum sum of
    // difference between the maximum
    // and the minimum element of each subarray
    static int minimumSum(int[] arr, int n, int k)
    {
        // Calculate the difference
        // between the adjacent elements
        // and store it in diff array
        int[] diff = new int[n - 1];
 
        for (int i = 0; i < n - 1; i++)
            diff[i] = (arr[i] - arr[i + 1]);
 
        Array.Sort(diff);
 
        int sum = arr[n - 1] - arr[0];
 
        for (int i = 0; i < k - 1; i++)
            sum += diff[i];
 
        // Return the required sum
        return sum;
    }
 
    static public void Main()
    {
        int[] arr = { 5, 9, 16, 17, 24, 43 };
        int N = arr.Length;
        int K = 3;
 
        // Function call
        Console.WriteLine(minimumSum(arr, N, K));
    }
}
 
// This code is contributed by Rohit Pradhan


Javascript




<script>
        // JavaScript code for the above approach
 
        // Function to find  minimum sum of
        // difference between the maximum
        // and the minimum element of each subarray
        function minimumSum(arr, n, k)
        {
         
            // Calculate the difference
            // between the adjacent elements
            // and store it in diff array
            let diff = new Array(n - 1);
 
            for (let i = 0; i < n - 1; i++)
                diff[i] = (arr[i] - arr[i + 1]);
 
            diff.sort(function (a, b) { return a - b })
 
            let sum = arr[n - 1] - arr[0];
 
            for (let i = 0; i < k - 1; i++)
                sum += diff[i];
 
            // Return the required sum
            return sum;
        }
 
        // Driver code
        let arr = [5, 9, 16, 17, 24, 43];
        let N = arr.length;
        let K = 3;
 
        // Function call
        document.write(minimumSum(arr, N, K));
 
 // This code is contributed by Potta Lokesh
 
    </script>


Output

12

Time Complexity: O(N * logN)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
08 May, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments