Given an unsorted array, trim the array such that twice of minimum is greater than the maximum in the trimmed array. Elements should be removed from either end of the array. The number of removals should be minimum.
Examples:
Input: arr[] = {4, 5, 100, 9, 10, 11, 12, 15, 200} Output: 4 We need to remove 4 elements (4, 5, 100, 200) so that 2*min becomes more than max. Input: arr[] = {4, 7, 5, 6} Output: 0 We don’t need to remove any element as 4*2 > 7 Input: arr[] = {20, 7, 5, 6} Output: 1
Approach:
We have discussed various approaches to solve this problem in O(n
3
), O(n
2
* logn), and O(n
2
) time in
. In this articles, we are going to discuss a O(n * logn) time solution using
and
concepts.
- Construct Segment Tree for RangeMinimumQuery and RangeMaximumQuery for the given input array.
- Take two pointers start and end, and initialize both to 0.
- While end is less than the length of the input array, do the following:
- Find min and max in the current window using Segment Trees constructed in step 1.
- Check if 2 * min ≤ max, if so then increment start pointer else update max valid length so far, if required
- Increment end
- length(arr[]) – maxValidLength is the required answer.
Below is the implementation of the above approach:
C++
#include <iostream> #include <vector> #include <cmath> #include <bits/stdc++.h> using namespace std; Â
class GFG { public : Â Â Â Â int removeMinElements(vector< int >& a) { Â Â Â Â Â Â Â Â int n = a.size(); Â
        RangeMinimumQuery rMimQ;         vector< int > minTree = rMimQ.createSegmentTree(a); Â
        RangeMaximumQuery rMaxQ;         vector< int > maxTree = rMaxQ.createSegmentTree(a); Â
        int start = 0;         int end = 0; Â
        // To store min and max in the current window         int min_val = 0;         int max_val = 0;         int maxValidLen = 0; Â
        while (end < n) {             min_val = rMimQ.rangeMinimumQuery(minTree, start, end, n);             max_val = rMaxQ.rangeMaximumQuery(maxTree, start, end, n);             if (2 * min_val <= max_val)                 start++;             else                 maxValidLen = max(maxValidLen, end - start + 1);             end++;         }         return n - maxValidLen;     } Â
    class RangeMinimumQuery {     public :         vector< int > createSegmentTree(vector< int >& input) {             int n = input.size();             int segTreeSize = 2 * get_next_power_of_two(n) - 1;             vector< int > segmentTree(segTreeSize, 0); Â
            createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0);             return segmentTree;         } Â
        void createSegmentTreeUtil(vector< int >& segmentTree, vector< int >& input, int low, int high, int pos) {             if (low == high) {                 // It's a leaf node                 segmentTree[pos] = input[low];                 return ;             } Â
            // Construct left and right subtrees and then             // update value for the current node             int mid = (low + high) / 2;             createSegmentTreeUtil(segmentTree, input, low, mid, (2 * pos + 1));             createSegmentTreeUtil(segmentTree, input, mid + 1, high, (2 * pos + 2));             segmentTree[pos] = min(segmentTree[2 * pos + 1], segmentTree[2 * pos + 2]);         } Â
        int rangeMinimumQuery(vector< int >& segmentTree, int from, int to, int inputSize) {             return rangeMinimumQueryUtil(segmentTree, 0, inputSize - 1, from, to, 0);         } Â
        int rangeMinimumQueryUtil(vector< int >& segmentTree, int low, int high, int from, int to, int pos) {             // Total overlap             if (from <= low && to >= high) {                 return segmentTree[pos];             } Â
            // No overlap             if (from > high || to < low) {                 return INT_MAX;             } Â
            // Partial overlap             int mid = (low + high) / 2;             int left = rangeMinimumQueryUtil(segmentTree, low, mid, from, to, (2 * pos + 1));             int right = rangeMinimumQueryUtil(segmentTree, mid + 1, high, from, to, (2 * pos + 2));             return min(left, right);         } Â
    private :         int get_next_power_of_two( int n) {             int logPart = ceil (log2(n));             return pow (2, logPart);         }     }; Â
    class RangeMaximumQuery {     public :         vector< int > createSegmentTree(vector< int >& input) {             int n = input.size();             int segTreeSize = 2 * get_next_power_of_two(n) - 1;             vector< int > segmentTree(segTreeSize, 0); Â
            createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0);             return segmentTree;         } Â
        void createSegmentTreeUtil(vector< int >& segmentTree, vector< int >& input, int low, int high, int pos) {             if (low == high) {                 // It's a leaf node                 segmentTree[pos] = input[low];                 return ;             } Â
            // Construct left and right subtrees and then             // update value for the current node             int mid = (low + high) / 2;             createSegmentTreeUtil(segmentTree, input, low, mid, (2 * pos + 1));             createSegmentTreeUtil(segmentTree, input, mid + 1, high, (2 * pos + 2));             segmentTree[pos] = max(segmentTree[2 * pos + 1], segmentTree[2 * pos + 2]);         } Â
        int rangeMaximumQuery(vector< int >& segmentTree, int from, int to, int inputSize) {             return rangeMaximumQueryUtil(segmentTree, 0, inputSize - 1, from, to, 0);         } Â
        int rangeMaximumQueryUtil(vector< int >& segmentTree, int low, int high, int from, int to, int pos) {             // Total overlap             if (from <= low && to >= high) {                 return segmentTree[pos];             } Â
            // No overlap             if (from > high || to < low) {                 return INT_MIN;             } Â
            // Partial overlap             int mid = (low + high) / 2;             int left = rangeMaximumQueryUtil(segmentTree, low, mid, from, to, (2 * pos + 1));             int right = rangeMaximumQueryUtil(segmentTree, mid + 1, high, from, to, (2 * pos + 2));             return max(left, right);         } Â
    private :         int get_next_power_of_two( int n) {             int logPart = ceil (log2(n));             return pow (2, logPart);         }     }; }; Â
int main() { Â Â Â Â vector< int > a = {4, 5, 100, 9, 10, 11, 12, 15, 200}; Â Â Â Â GFG gfg; Â Â Â Â cout << gfg.removeMinElements(a) << endl; Â Â Â Â return 0; } |
Java
// Java implementation of the approach public class GFG { Â
    // Function to return the minimum removals     // required so that the array satisfy     // the given condition     public int removeMinElements( int [] a)     {         int n = a.length; Â
        RangeMinimumQuery rMimQ = new RangeMinimumQuery();         int [] minTree = rMimQ.createSegmentTree(a); Â
        RangeMaximumQuery rMaxQ = new RangeMaximumQuery();         int [] maxTree = rMaxQ.createSegmentTree(a); Â
        int start = 0 , end = 0 ; Â
        // To store min and max in the current window         int min, max;         int maxValidLen = 0 ; Â
        while (end < n) {             min = rMimQ.rangeMinimumQuery(minTree,                                           start, end, n);             max = rMaxQ.rangeMaximumQuery(maxTree,                                           start, end, n);             if ( 2 * min <= max)                 start++;             else                 maxValidLen = Math.max(maxValidLen,                                        end - start + 1 );             end++;         }         return n - maxValidLen;     } Â
    class RangeMinimumQuery { Â
        // Creates a new segment tree from         // the given input array         public int [] createSegmentTree( int [] input)         {             int n = input.length;             int segTreeSize = 2 * getNextPowerOfTwo(n) - 1 ;             int [] segmentTree = new int [segTreeSize]; Â
            createSegmentTreeUtil(segmentTree, input,                                   0 , n - 1 , 0 );             return segmentTree;         } Â
        private void createSegmentTreeUtil( int [] segmentTree,                                            int [] input, int low,                                            int high, int pos)         {             if (low == high) { Â
                // Its a leaf node                 segmentTree[pos] = input[low];                 return ;             } Â
            // Construct left and right subtrees and then             // update value for current node             int mid = (low + high) / 2 ;             createSegmentTreeUtil(segmentTree, input, low,                                   mid, ( 2 * pos + 1 ));             createSegmentTreeUtil(segmentTree, input,                                   mid + 1 , high, ( 2 * pos + 2 ));             segmentTree[pos] = Math.min(segmentTree[ 2 * pos + 1 ],                                         segmentTree[ 2 * pos + 2 ]);         } Â
        public int rangeMinimumQuery( int [] segmentTree, int from,                                      int to, int inputSize)         {             return rangeMinimumQueryUtil(segmentTree, 0 ,                                          inputSize - 1 , from, to, 0 );         } Â
        private int rangeMinimumQueryUtil( int [] segmentTree, int low,                                         int high, int from, int to, int pos)         {             // Total overlap             if (from <= low && to >= high) {                 return segmentTree[pos];             } Â
            // No overlap             if (from > high || to < low) {                 return Integer.MAX_VALUE;             } Â
            // Partial overlap             int mid = (low + high) / 2 ;             int left = rangeMinimumQueryUtil(segmentTree, low,                                              mid, from, to,                                              ( 2 * pos + 1 ));             int right = rangeMinimumQueryUtil(segmentTree,                                               mid + 1 , high, from,                                               to, ( 2 * pos + 2 ));             return Math.min(left, right);         }     } Â
    class RangeMaximumQuery { Â
        // Creates a new segment tree from given input array         public int [] createSegmentTree( int [] input)         {             int n = input.length;             int segTreeSize = 2 * getNextPowerOfTwo(n) - 1 ;             int [] segmentTree = new int [segTreeSize]; Â
            createSegmentTreeUtil(segmentTree, input, 0 , n - 1 , 0 );             return segmentTree;         } Â
        private void createSegmentTreeUtil( int [] segmentTree, int [] input,                                            int low, int high, int pos)         {             if (low == high) { Â
                // Its a leaf node                 segmentTree[pos] = input[low];                 return ;             } Â
            // Construct left and right subtrees and then             // update value for current node             int mid = (low + high) / 2 ;             createSegmentTreeUtil(segmentTree, input, low,                                   mid, ( 2 * pos + 1 ));             createSegmentTreeUtil(segmentTree, input,                                   mid + 1 , high, ( 2 * pos + 2 ));             segmentTree[pos] = Math.max(segmentTree[ 2 * pos + 1 ],                                         segmentTree[ 2 * pos + 2 ]);         } Â
        public int rangeMaximumQuery( int [] segmentTree,                                      int from, int to, int inputSize)         {             return rangeMaximumQueryUtil(segmentTree, 0 ,                                          inputSize - 1 , from, to, 0 );         } Â
        private int rangeMaximumQueryUtil( int [] segmentTree, int low,                                  int high, int from, int to, int pos)         {             // Total overlap             if (from <= low && to >= high) {                 return segmentTree[pos];             } Â
            // No overlap             if (from > high || to < low) {                 return Integer.MIN_VALUE;             } Â
            // Partial overlap             int mid = (low + high) / 2 ;             int left = rangeMaximumQueryUtil(segmentTree, low,                                              mid, from, to,                                              ( 2 * pos + 1 ));             int right = rangeMaximumQueryUtil(segmentTree,                                               mid + 1 , high, from,                                               to, ( 2 * pos + 2 ));             return Math.max(left, right);         }     } Â
    // Function to return the minimum power of 2     // which is greater than n     private int getNextPowerOfTwo( int n)     {         int logPart = ( int )Math.ceil(Math.log(n)                                      / Math.log( 2 ));         return ( int )Math.pow( 2 , logPart);     } Â
    // Driver code     public static void main(String[] args)     {         int [] a = { 4 , 5 , 100 , 9 , 10 , 11 , 12 , 15 , 200 };         GFG gfg = new GFG();         System.out.println(gfg.removeMinElements(a));     } } |
Python3
import math Â
class GFG:     # Function to return the minimum removals     # required so that the array satisfies     # the given condition     def removeMinElements( self , a):         n = len (a) Â
        rMimQ = self .RangeMinimumQuery()         minTree = rMimQ.createSegmentTree(a) Â
        rMaxQ = self .RangeMaximumQuery()         maxTree = rMaxQ.createSegmentTree(a) Â
        start = 0         end = 0 Â
        # To store min and max in the current window         min_val = 0         max_val = 0         maxValidLen = 0 Â
        while end < n:             min_val = rMimQ.rangeMinimumQuery(minTree, start, end, n)             max_val = rMaxQ.rangeMaximumQuery(maxTree, start, end, n)             if 2 * min_val < = max_val:                 start + = 1             else :                 maxValidLen = max (maxValidLen, end - start + 1 )             end + = 1         return n - maxValidLen Â
    class RangeMinimumQuery:         def createSegmentTree( self , input ):             n = len ( input )             segTreeSize = 2 * self .get_next_power_of_two(n) - 1             segmentTree = [ 0 ] * segTreeSize Â
            self .createSegmentTreeUtil(segmentTree, input , 0 , n - 1 , 0 )             return segmentTree Â
        def createSegmentTreeUtil( self , segmentTree, input , low, high, pos):             if low = = high:                 # It's a leaf node                 segmentTree[pos] = input [low]                 return Â
            # Construct left and right subtrees and then             # update value for the current node             mid = (low + high) / / 2             self .createSegmentTreeUtil(segmentTree, input , low, mid, ( 2 * pos + 1 ))             self .createSegmentTreeUtil(segmentTree, input , mid + 1 , high, ( 2 * pos + 2 ))             segmentTree[pos] = min (segmentTree[ 2 * pos + 1 ], segmentTree[ 2 * pos + 2 ]) Â
        def rangeMinimumQuery( self , segmentTree, from_, to, inputSize):             return self .rangeMinimumQueryUtil(segmentTree, 0 , inputSize - 1 , from_, to, 0 ) Â
        def rangeMinimumQueryUtil( self , segmentTree, low, high, from_, to, pos):             # Total overlap             if from_ < = low and to > = high:                 return segmentTree[pos] Â
            # No overlap             if from_ > high or to < low:                 return float ( 'inf' ) Â
            # Partial overlap             mid = (low + high) / / 2             left = self .rangeMinimumQueryUtil(segmentTree, low, mid, from_, to, ( 2 * pos + 1 ))             right = self .rangeMinimumQueryUtil(segmentTree, mid + 1 , high, from_, to, ( 2 * pos + 2 ))             return min (left, right) Â
        # Move the get_next_power_of_two method here         def get_next_power_of_two( self , n):             log_part = math.ceil(math.log(n) / math.log( 2 ))             return 2 * * log_part Â
    class RangeMaximumQuery:         # Move the get_next_power_of_two method here         def get_next_power_of_two( self , n):             log_part = math.ceil(math.log(n) / math.log( 2 ))             return 2 * * log_part                      def createSegmentTree( self , input ):             n = len ( input )             segTreeSize = 2 * self .get_next_power_of_two(n) - 1             segmentTree = [ 0 ] * segTreeSize Â
            self .createSegmentTreeUtil(segmentTree, input , 0 , n - 1 , 0 )             return segmentTree Â
        def createSegmentTreeUtil( self , segmentTree, input , low, high, pos):             if low = = high:                 # It's a leaf node                 segmentTree[pos] = input [low]                 return Â
            # Construct left and right subtrees and then             # update value for the current node             mid = (low + high) / / 2             self .createSegmentTreeUtil(segmentTree, input , low, mid, ( 2 * pos + 1 ))             self .createSegmentTreeUtil(segmentTree, input , mid + 1 , high, ( 2 * pos + 2 ))             segmentTree[pos] = max (segmentTree[ 2 * pos + 1 ], segmentTree[ 2 * pos + 2 ]) Â
        def rangeMaximumQuery( self , segmentTree, from_, to, inputSize):             return self .rangeMaximumQueryUtil(segmentTree, 0 , inputSize - 1 , from_, to, 0 ) Â
        def rangeMaximumQueryUtil( self , segmentTree, low, high, from_, to, pos):             # Total overlap             if from_ < = low and to > = high:                 return segmentTree[pos] Â
            # No overlap             if from_ > high or to < low:                 return float ( '-inf' ) Â
            # Partial overlap             mid = (low + high) / / 2             left = self .rangeMaximumQueryUtil(segmentTree, low, mid, from_, to, ( 2 * pos + 1 ))             right = self .rangeMaximumQueryUtil(segmentTree, mid + 1 , high, from_, to, ( 2 * pos + 2 ))             return max (left, right) Â
# Driver code if __name__ = = "__main__" : Â Â Â Â a = [ 4 , 5 , 100 , 9 , 10 , 11 , 12 , 15 , 200 ] Â Â Â Â gfg = GFG() Â Â Â Â print (gfg.removeMinElements(a)) |
C#
// C# implementation of the approach using System; Â
class GFG { Â
    // Function to return the minimum removals     // required so that the array satisfy     // the given condition     static int removeMinElements( int [] a)     {         int n = a.Length; Â
        RangeMinimumQuery rMimQ = new RangeMinimumQuery();         int [] minTree = rMimQ.createSegmentTree(a); Â
        RangeMaximumQuery rMaxQ = new RangeMaximumQuery();         int [] maxTree = rMaxQ.createSegmentTree(a); Â
        int start = 0, end = 0; Â
        // To store min and max in the current window         int min, max;         int maxValidLen = 0; Â
        while (end < n)         {             min = rMimQ.rangeMinimumQuery(minTree,                                         start, end, n);             max = rMaxQ.rangeMaximumQuery(maxTree,                                         start, end, n);             if (2 * min <= max)                 start++;             else                 maxValidLen = Math.Max(maxValidLen,                                     end - start + 1);             end++;         }         return n - maxValidLen;     } Â
    class RangeMinimumQuery { Â
        // Creates a new segment tree from         // the given input array         public int [] createSegmentTree( int [] input)         {             int n = input.Length;             int segTreeSize = 2 * getNextPowerOfTwo(n) - 1;             int [] segmentTree = new int [segTreeSize]; Â
            createSegmentTreeUtil(segmentTree, input,                                 0, n - 1, 0);             return segmentTree;         } Â
        public void createSegmentTreeUtil( int [] segmentTree,                                         int [] input, int low,                                         int high, int pos)         {             if (low == high) { Â
                // Its a leaf node                 segmentTree[pos] = input[low];                 return ;             } Â
            // Construct left and right subtrees and then             // update value for current node             int mid = (low + high) / 2;             createSegmentTreeUtil(segmentTree, input, low,                                 mid, (2 * pos + 1));             createSegmentTreeUtil(segmentTree, input,                                 mid + 1, high, (2 * pos + 2));             segmentTree[pos] = Math.Min(segmentTree[2 * pos + 1],                                         segmentTree[2 * pos + 2]);         } Â
        public int rangeMinimumQuery( int [] segmentTree, int from ,                                     int to, int inputSize)         {             return rangeMinimumQueryUtil(segmentTree, 0,                                         inputSize - 1, from , to, 0);         } Â
        static int rangeMinimumQueryUtil( int [] segmentTree, int low,                                         int high, int from , int to, int pos)         {             // Total overlap             if ( from <= low && to >= high) {                 return segmentTree[pos];             } Â
            // No overlap             if ( from > high || to < low) {                 return int .MaxValue;             } Â
            // Partial overlap             int mid = (low + high) / 2;             int left = rangeMinimumQueryUtil(segmentTree, low,                                             mid, from , to,                                             (2 * pos + 1));             int right = rangeMinimumQueryUtil(segmentTree,                                             mid + 1, high, from ,                                             to, (2 * pos + 2));             return Math.Min(left, right);         }     } Â
    class RangeMaximumQuery { Â
        // Creates a new segment tree from given input array         public int [] createSegmentTree( int [] input)         {             int n = input.Length;             int segTreeSize = 2 * getNextPowerOfTwo(n) - 1;             int [] segmentTree = new int [segTreeSize]; Â
            createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0);             return segmentTree;         } Â
        public void createSegmentTreeUtil( int [] segmentTree, int [] input,                                         int low, int high, int pos)         {             if (low == high) { Â
                // Its a leaf node                 segmentTree[pos] = input[low];                 return ;             } Â
            // Construct left and right subtrees and then             // update value for current node             int mid = (low + high) / 2;             createSegmentTreeUtil(segmentTree, input, low,                                 mid, (2 * pos + 1));             createSegmentTreeUtil(segmentTree, input,                                 mid + 1, high, (2 * pos + 2));             segmentTree[pos] = Math.Max(segmentTree[2 * pos + 1],                                         segmentTree[2 * pos + 2]);         } Â
        public int rangeMaximumQuery( int [] segmentTree,                                     int from , int to, int inputSize)         {             return rangeMaximumQueryUtil(segmentTree, 0,                                         inputSize - 1, from , to, 0);         } Â
        public int rangeMaximumQueryUtil( int [] segmentTree, int low,                                 int high, int from , int to, int pos)         {             // Total overlap             if ( from <= low && to >= high) {                 return segmentTree[pos];             } Â
            // No overlap             if ( from > high || to < low) {                 return int .MinValue;             } Â
            // Partial overlap             int mid = (low + high) / 2;             int left = rangeMaximumQueryUtil(segmentTree, low,                                             mid, from , to,                                             (2 * pos + 1));             int right = rangeMaximumQueryUtil(segmentTree,                                             mid + 1, high, from ,                                             to, (2 * pos + 2));             return Math.Max(left, right);         }     } Â
    // Function to return the minimum power of 2     // which is greater than n     static int getNextPowerOfTwo( int n)     {         int logPart = ( int )Math.Ceiling(Math.Log(n)                                     / Math.Log(2));         return ( int )Math.Pow(2, logPart);     } Â
    // Driver code     public static void Main(String[] args)     {         int [] a = { 4, 5, 100, 9, 10, 11, 12, 15, 200 };         Console.WriteLine(removeMinElements(a));     } } Â
// This code is contributed by Rajput-Ji |
4
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!