Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AIRemove elements that appear strictly less than k times

Remove elements that appear strictly less than k times

Given an array of integers, remove all the elements which appear strictly less than k times.

Examples: 

Input : arr[] = {1, 2, 2, 3, 2, 3, 4}
        k = 2
Output : 2 2 3 2 3
Explanation : {1, 4} appears less than 2 times.

Approach :  

  • Take a hash map, which will store the frequency of all the elements in the array.
  • Now, traverse once again.
  • Remove the elements which appear strictly less than k times.
  • Else, print it.

Implementation:

C++




// C++ program to remove the elements which
// appear strictly less than k times from the array.
#include "iostream"
#include "unordered_map"
using namespace std;
 
void removeElements(int arr[], int n, int k)
{
    // Hash map which will store the
    // frequency of the elements of the array.
    unordered_map<int, int> mp;
 
    for (int i = 0; i < n; ++i) {
        // Incrementing the frequency
        // of the element by 1.
        mp[arr[i]]++;
    }
 
    for (int i = 0; i < n; ++i) {
 
        // Print the element which appear
        // more than or equal to k times.
        if (mp[arr[i]] >= k) {
            cout << arr[i] << " ";
        }
    }
}
 
int main()
{
    int arr[] = { 1, 2, 2, 3, 2, 3, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
    removeElements(arr, n, k);
    return 0;
}


Java




// Java program to remove the elements which
// appear strictly less than k times from the array.
import java.util.HashMap;
 
class neveropen
{
 
    public static void removeElements(int[] arr,
                                        int n, int k)
    {
         
        // Hash map which will store the
        // frequency of the elements of the array.
        HashMap<Integer, Integer> mp = new HashMap<>();
 
        for (int i = 0; i < n; ++i)
        {
 
            // Incrementing the frequency
            // of the element by 1.
            if (!mp.containsKey(arr[i]))
                mp.put(arr[i], 1);
            else
            {
                int x = mp.get(arr[i]);
                mp.put(arr[i], ++x);
            }
        }
 
        for (int i = 0; i < n; ++i)
        {
             
            // Print the element which appear
            // more than or equal to k times.
            if (mp.get(arr[i]) >= k)
                System.out.print(arr[i] + " ");
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 1, 2, 2, 3, 2, 3, 4 };
        int n = arr.length;
        int k = 2;
        removeElements(arr, n, k);
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 program to remove the elements which
# appear strictly less than k times from the array.
def removeElements(arr, n, k):
     
    # Hash map which will store the
    # frequency of the elements of the array.
    mp = dict()
 
    for i in range(n):
         
        # Incrementing the frequency
        # of the element by 1.
        mp[arr[i]] = mp.get(arr[i], 0) + 1
 
    for i in range(n):
 
        # Print the element which appear
        # more than or equal to k times.
        if (arr[i] in mp and mp[arr[i]] >= k):
            print(arr[i], end = " ")
 
# Driver Code
arr = [1, 2, 2, 3, 2, 3, 4]
n = len(arr)
k = 2
removeElements(arr, n, k)
 
# This code is contributed by Mohit Kumar


C#




// C# program to remove the elements which
// appear strictly less than k times from the array.
using System;
using System.Collections.Generic;
  
class neveropen
{
  
    public static void removeElements(int[] arr,
                                        int n, int k)
    {
          
        // Hash map which will store the
        // frequency of the elements of the array.
        Dictionary<int, int> mp = new Dictionary<int, int>();
  
        for (int i = 0; i < n; ++i)
        {
  
            // Incrementing the frequency
            // of the element by 1.
            if (!mp.ContainsKey(arr[i]))
                mp.Add(arr[i], 1);
            else
            {
                int x = mp[arr[i]];
                mp[arr[i]] = mp[arr[i]] + ++x;
            }
        }
  
        for (int i = 0; i < n; ++i)
        {
              
            // Print the element which appear
            // more than or equal to k times.
            if (mp[arr[i]] >= k)
                Console.Write(arr[i] + " ");
        }
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        int[] arr = { 1, 2, 2, 3, 2, 3, 4 };
        int n = arr.Length;
        int k = 2;
        removeElements(arr, n, k);
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript program to remove the elements which
// appear strictly less than k times from the array.
 
function removeElements(arr,n,k)
{
    // Hash map which will store the
        // frequency of the elements of the array.
        let mp = new Map();
  
        for (let i = 0; i < n; ++i)
        {
  
            // Incrementing the frequency
            // of the element by 1.
            if (!mp.has(arr[i]))
                mp.set(arr[i], 1);
            else
            {
                let x = mp.get(arr[i]);
                mp.set(arr[i], ++x);
            }
        }
  
        for (let i = 0; i < n; ++i)
        {
              
            // Print the element which appear
            // more than or equal to k times.
            if (mp.get(arr[i]) >= k)
                document.write(arr[i] + " ");
        }
}
 
// Driver code
 
let arr=[ 1, 2, 2, 3, 2, 3, 4 ];
let n = arr.length;
let k = 2;
removeElements(arr, n, k);
 
 
// This code is contributed by unknown2108
 
</script>


Output

2 2 3 2 3 

Time Complexity: O(N)
Auxiliary Space: O(n)

Method #2:Using Built-in Python functions:

  • Count the frequencies of every element using Counter() function
  • Traverse the array.
  • Remove the elements which appear strictly less than k times.
  • Else, print it.

Implementation:

C++




// C++ program to remove elements which appear more than k
// times in an array
#include <iostream>
#include <unordered_map>
 
using namespace std;
 
void removeElements(int arr[], int n, int k)
{
 
  // Creating an unordered_map to store the frequencies
  unordered_map<int, int> freq;
  for (int i = 0; i < n; i++) {
    if (freq.count(arr[i])) {
      freq[arr[i]]++;
    }
    else {
      freq[arr[i]] = 1;
    }
  }
 
  // Printing the elements which appear more than or equal
  // to k times
  for (int i = 0; i < n; i++) {
    if (freq[arr[i]] >= k) {
      cout << arr[i] << " ";
    }
  }
}
 
int main()
{
  int arr[] = { 1, 2, 2, 3, 2, 3, 4 };
  int n = sizeof(arr) / sizeof(arr[0]);
  int k = 2;
  removeElements(arr, n, k);
  return 0;
}


Java




import java.util.*;
 
public class Main {
 
  public static void removeElements(int[] arr, int n, int k) {
 
    // Creating a HashMap to store the frequencies
    HashMap<Integer, Integer> freq = new HashMap<>();
    for (int i = 0; i < n; i++) {
      if (freq.containsKey(arr[i])) {
        freq.put(arr[i], freq.get(arr[i]) + 1);
      }
      else {
        freq.put(arr[i], 1);
      }
    }
 
    // Printing the elements which appear more than or equal to k times
    for (int i = 0; i < n; i++) {
      if (freq.get(arr[i]) >= k) {
        System.out.print(arr[i] + " ");
      }
    }
  }
 
  public static void main(String[] args) {
    int[] arr = {1, 2, 2, 3, 2, 3, 4};
    int n = arr.length;
    int k = 2;
    removeElements(arr, n, k);
  }
}


Python3




# Python3 program to remove the elements which
# appear strictly less than k times from the array.
from collections import Counter
 
def removeElements(arr, n, k):
 
    # Calculating frequencies using
    # Counter function
    freq = Counter(arr)
    for i in range(n):
 
        # Print the element which appear
        # more than or equal to k times.
        if (freq[arr[i]] >= k):
            print(arr[i], end=" ")
 
 
# Driver Code
arr = [1, 2, 2, 3, 2, 3, 4]
n = len(arr)
k = 2
removeElements(arr, n, k)
 
# This code is contributed by vikkycirus


C#




// C# Equivalent
using System;
using System.Collections.Generic;
 
public class Program
{
  public static void removeElements(int[] arr, int n, int k)
  {
 
    // Creating a Dictionary to store the frequencies
    Dictionary<int, int> freq = new Dictionary<int, int>();
    for (int i = 0; i < n; i++)
    {
      if (freq.ContainsKey(arr[i]))
      {
        freq[arr[i]] = freq[arr[i]] + 1;
      }
      else
      {
        freq.Add(arr[i], 1);
      }
    }
 
    // Printing the elements which appear more than or equal to k times
    for (int i = 0; i < n; i++)
    {
      if (freq[arr[i]] >= k)
      {
        Console.Write(arr[i] + " ");
      }
    }
  }
 
  public static void Main(string[] args)
  {
    int[] arr = { 1, 2, 2, 3, 2, 3, 4 };
    int n = arr.Length;
    int k = 2;
    removeElements(arr, n, k);
  }
}


Javascript




// JavaScript program to remove the elements which
// appear strictly less than k times from the array.
let x="";
function removeElements(arr, n, k) {
   
  // Calculating frequencies using
  // the reduce() function
  const freq = arr.reduce((count, val) => {
    count[val] = (count[val] || 0) + 1;
    return count;
  }, {});
   
  for (let i = 0; i < n; i++) {
    // Print the element which appears
    // more than or equal to k times.
    if (freq[arr[i]] >= k) {
      x = x+ arr[i] + " ";
    }
  }
  console.log(x);
}
 
// Driver Code
const arr = [1, 2, 2, 3, 2, 3, 4];
const n = arr.length;
const k = 2;
removeElements(arr, n, k);


Output

2 2 3 2 3 

Time Complexity: O(n)
Auxiliary Space: O(n)

Method #3:( Space optimization):  First  we will sort the array  and then check if the frequency of array element is greater than or equal to k  with the use of binary search function ( Upper_bound ) . Frequency of array element is ‘last_index-first_index+1’ . If the frequency is greater than one , then print it .      

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to remove element that occurs
// lees than k times in the array
void removeElements(int arr[], int n, int k)
{
    sort(arr, arr + n); // sort array for binary search
 
    for (int i = 0; i < n; i++) {
        // index of first and last occ of arr[i]
        int first_index
            = lower_bound(arr, arr + n, arr[i]) - arr;
        int last_index
            = upper_bound(arr, arr + n, arr[i]) - arr - 1;
 
        int fre = last_index - first_index
                  + 1; // finding frequency
        if (fre >= k) { // printing element if it is greater
                        // than 1
            cout << arr[i] << " ";
        }
    }
}
 
// Drive code
int main()
{
    int arr[] = { 1, 2, 2, 3, 2, 3, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
 
    // Function call
    removeElements(arr, n, k);
    return 0;
}
 
// This Code is contributed by nikhilsainiofficial546


Javascript




// javascript implementation of the above approach
function lower_bound(a, x){
    let l = 0;
    let h = arr.length - 1;
     
    while(l <= h){
        let m = Math.floor((l + h)/2);
        if(a[m] < x){
            l = m + 1;
        }
        else if(a[m] >= x){
            h = m - 1;
        }
    }
     
    return l;
}
 
function upper_bound(a, x){
    let l = 0;
    let h = arr.length - 1;
     
    while(l <= h){
        let m = Math.floor((l + h)/2);
         
        if(a[m] <= x){
            l = m + 1;
        }
        else if(a[m] > x){
            h = m - 1;
        }
    }
     
    return l;
}
 
//Function to remove element that occurs
// lees than k times in the array
function removeElements(arr, n, k)
{  
    arr.sort();
    
    for(let i = 0 ; i < n ;i++)
    {
      //index of first and last occ of arr[i]
      let first_index = lower_bound(arr, arr[i]);
      let last_index = upper_bound(arr, arr[i])- 1;
       
      let fre = last_index-first_index+1;//finding frequency
      if(fre >= k)
      {
          // printing element if it is greater than 1\
          process.stdout.write(arr[i] + " ");
      }
    }
}
 
// Drive code
let arr = [1, 2, 2, 3, 2, 3, 4];
let n = arr.length;
let k = 2;
 
// Function call
removeElements(arr, n, k);
    
 // The code is contributed by Nidhi goel.


Python3




# Function to remove element that occurs
# less than k times in the array
 
 
def removeElements(arr, n, k):
    arr.sort()  # sort array for binary search
 
    for i in range(n):
        # index of first and last occ of arr[i]
        first_index = bisect.bisect_left(arr, arr[i])
        last_index = bisect.bisect_right(arr, arr[i]) - 1
 
        fre = last_index - first_index + 1  # finding frequency
        if fre >= k:
            # printing element if it is greater than 1
            print(arr[i], end=" ")
 
 
# Driver code
if __name__ == "__main__":
    import bisect
 
    arr = [1, 2, 2, 3, 2, 3, 4]
    n = len(arr)
    k = 2
 
    # Function call
    removeElements(arr, n, k)


Java




import java.util.*;
 
class Main {
    // Function to remove element that occurs
    // lees than k times in the array
    static void removeElements(int arr[], int n, int k)
    {
        Arrays.sort(arr); // sort array for binary search
        ArrayList<Integer> arr1 = new ArrayList<Integer>(5);
 
        // using add() to initialize values
 
        for (int i = 0; i < n; i++) {
            arr1.add(arr[i]);
        }
        for (int i = 0; i < n; i++) {
            // index of first and last occ of arr[i]
            int first_index = arr1.indexOf(arr[i]);
            int last_index = arr1.lastIndexOf(arr[i]);
            while (last_index < n
                   && arr[last_index] == arr[i])
                last_index++;
            last_index--;
 
            int fre = last_index - first_index
                      + 1; // finding frequency
            if (fre >= k) { // printing element if it is
                            // greater than 1
                System.out.print(arr[i] + " ");
            }
        }
    }
 
    // Drive code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 2, 3, 2, 3, 4 };
        int n = arr.length;
        int k = 2;
 
        // Function call
        removeElements(arr, n, k);
    }
}
// This code is contributed by Pratik Gagare (pratikg03)


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class MainClass {
    // Function to remove element that occurs
    // less than k times in the array
    static void RemoveElements(int[] arr, int n, int k)
    {
        Array.Sort(arr); // sort array for binary search
        List<int> arr1 = new List<int>(5);
 
        // using Add() to initialize values
        for (int i = 0; i < n; i++) {
            arr1.Add(arr[i]);
        }
 
        for (int i = 0; i < n; i++) {
            // index of first and last occ of arr[i]
            int first_index = arr1.IndexOf(arr[i]);
            int last_index = arr1.LastIndexOf(arr[i]);
            while (last_index < n && arr[last_index] == arr[i])
                last_index++;
            last_index--;
 
            int fre = last_index - first_index + 1; // finding frequency
            if (fre >= k) { // printing element if it is greater than 1
                Console.Write(arr[i] + " ");
            }
        }
    }
 
    // Drive code
    public static void Main (string[] args)
    {
        int[] arr = { 1, 2, 2, 3, 2, 3, 4 };
        int n = arr.Length;
        int k = 2;
 
        // Function call
        RemoveElements(arr, n, k);
    }
}


Output

2 2 2 3 3 

Time Complexity: O(n*log2n) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments