Given a tree of N nodes and N-1 edges. Also given an integer M and a node, the task is to print the M-th node in the DFS of the subtree of a given node for multiple queries.
Note: M will not be greater than the number of nodes in the subtree of the given node.
Input: M = 3, node = 1
Output: 4
In the above example if 1 is given as the node, then the DFS of subtree will be 1 2 4 6 7 5 3, hence if M is 3, then the 3rd node is 4Input: M = 4, node = 2
Output: 7
If 2 is given as the node, then the DFS of the subtree will be 2 4 6 7 5., hence if M is 4 then the 4th node is 7.
Approach:
- Add the edges between the nodes in an adjacency list.
- Call DFS function to generate the DFS of the complete tree.
- Use an under[] array to store the height of the subtree under the given node including the node.
- In the DFS function, keep incrementing the size of subtree on every recursive call.
- Mark the node index in the DFS of complete using hashing.
- Let index of given node in the DFS of the tree be ind, then the M-th node will be at index ind + M -1 as the DFS of a subtree of a node will always be a contiguous subarray starting from the node.
Below is the implementation of the above approach.
C++
// C++ program for Queries // for DFS of subtree of a node in a tree #include <bits/stdc++.h> using namespace std; const int N = 100000; // Adjacency list to store the // tree nodes connection vector< int > v[N]; // stores the index of node in DFS unordered_map< int , int > mp; // stores the index of node in // original node vector< int > a; // Function to call DFS and count nodes // under that subtree void dfs( int under[], int child, int parent) { // stores the DFS of tree a.push_back(child); // height of subtree under[child] = 1; // iterate for children for ( auto it : v[child]) { // if not equal to parent // so that it does not traverse back if (it != parent) { // call DFS for subtree dfs(under, it, child); // add the height under[child] += under[it]; } } } // Function to return the DFS of subtree of node int printnodeDFSofSubtree( int node, int under[], int m) { // index of node in the original DFS int ind = mp[node]; // height of subtree of node return a[ind + m - 1]; } // Function to add edges to a tree void addEdge( int x, int y) { v[x].push_back(y); v[y].push_back(x); } // Marks the index of node in original DFS void markIndexDfs() { int size = a.size(); // marks the index for ( int i = 0; i < size; i++) { mp[a[i]] = i; } } // Driver Code int main() { int n = 7; // add edges of a tree addEdge(1, 2); addEdge(1, 3); addEdge(2, 4); addEdge(2, 5); addEdge(4, 6); addEdge(4, 7); // array to store the height of subtree // of every node in a tree int under[n + 1]; // Call the function DFS to generate the DFS dfs(under, 1, 0); // Function call to mark the index of node markIndexDfs(); int m = 3; // Query 1 cout << printnodeDFSofSubtree(1, under, m) << endl; // Query 2 m = 4; cout << printnodeDFSofSubtree(2, under, m); return 0; } |
Java
// Java program for Queries for // DFS of subtree of a node in a tree import java.util.*; class GFG{ // Adjacency list to store the // tree nodes connection static ArrayList<ArrayList<Integer>> v; // Stores the index of node in DFS static HashMap<Integer, Integer> mp; // Stores the index of node in // original node static ArrayList<Integer> a; // Function to call DFS and count nodes // under that subtree static void dfs( int under[], int child, int parent) { // Stores the DFS of tree a.add(child); // Height of subtree under[child] = 1 ; // iterate for children for ( int it : v.get(child)) { // If not equal to parent // so that it does not traverse back if (it != parent) { // Call DFS for subtree dfs(under, it, child); // Add the height under[child] += under[it]; } } } // Function to return the DFS of subtree of node static int printnodeDFSofSubtree( int node, int under[], int m) { // Index of node in the original DFS int ind = mp.get(node); // Height of subtree of node return a.get(ind + m - 1 ); } // Function to add edges to a tree static void addEdge( int x, int y) { v.get(x).add(y); v.get(y).add(x); } // Marks the index of node in original DFS static void markIndexDfs() { int size = a.size(); // Marks the index for ( int i = 0 ; i < size; i++) { mp.put(a.get(i), i); } } // Driver Code public static void main(String[] args) { int n = 7 ; mp = new HashMap<>(); v = new ArrayList<>(); a = new ArrayList<>(); for ( int i = 0 ; i < n + 1 ; i++) v.add( new ArrayList<>()); // Add edges of a tree addEdge( 1 , 2 ); addEdge( 1 , 3 ); addEdge( 2 , 4 ); addEdge( 2 , 5 ); addEdge( 4 , 6 ); addEdge( 4 , 7 ); // Array to store the height of subtree // of every node in a tree int under[] = new int [n + 1 ]; // Call the function DFS to generate the DFS dfs(under, 1 , 0 ); // Function call to mark the index of node markIndexDfs(); int m = 3 ; // Query 1 System.out.println( printnodeDFSofSubtree( 1 , under, m)); // Query 2 m = 4 ; System.out.println( printnodeDFSofSubtree( 2 , under, m)); } } // This code is contributed by jrishabh99 |
Python3
# Python3 program for Queries # for DFS of subtree of a node in a tree N = 100000 # Adjacency list to store the # tree nodes connection v = [[] for i in range (N)] # stores the index of node in DFS mp = {} # stores the index of node in # original node a = [] # Function to call DFS and count nodes # under that subtree def dfs(under, child, parent): # stores the DFS of tree a.append(child) # height of subtree under[child] = 1 # iterate for children for it in v[child]: # if not equal to parent # so that it does not traverse back if (it ! = parent): # call DFS for subtree dfs(under, it, child) # add the height under[child] + = under[it] # Function to return the DFS of subtree of node def printnodeDFSofSubtree(node, under, m): # index of node in the original DFS ind = mp[node] # height of subtree of node return a[ind + m - 1 ] # Function to add edges to a tree def addEdge(x, y): v[x].append(y) v[y].append(x) # Marks the index of node in original DFS def markIndexDfs(): size = len (a) # marks the index for i in range (size): mp[a[i]] = i # Driver Code n = 7 # add edges of a tree addEdge( 1 , 2 ) addEdge( 1 , 3 ) addEdge( 2 , 4 ) addEdge( 2 , 5 ) addEdge( 4 , 6 ) addEdge( 4 , 7 ) # array to store the height of subtree # of every node in a tree under = [ 0 ] * (n + 1 ) # Call the function DFS to generate the DFS dfs(under, 1 , 0 ) # Function call to mark the index of node markIndexDfs() m = 3 # Query 1 print (printnodeDFSofSubtree( 1 , under, m)) # Query 2 m = 4 print (printnodeDFSofSubtree( 2 , under, m)) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# program for Queries for DFS // of subtree of a node in a tree using System; using System.Collections.Generic; class GFG{ // Adjacency list to store the // tree nodes connection static List<List< int >> v; // Stores the index of node in DFS static Dictionary< int , int > mp; // Stores the index of node in // original node static List< int > a; // Function to call DFS and count nodes // under that subtree static void dfs( int []under, int child, int parent) { // Stores the DFS of tree a.Add(child); // Height of subtree under[child] = 1; // Iterate for children foreach ( int it in v[child]) { // If not equal to parent so // that it does not traverse back if (it != parent) { // Call DFS for subtree dfs(under, it, child); // Add the height under[child] += under[it]; } } } // Function to return the DFS of subtree of node static int printnodeDFSofSubtree( int node, int []under, int m) { // Index of node in the original DFS int ind = mp[node]; // Height of subtree of node return a[ind + m - 1]; } // Function to add edges to a tree static void addEdge( int x, int y) { v[x].Add(y); v[y].Add(x); } // Marks the index of node in original DFS static void markIndexDfs() { int size = a.Count; // Marks the index for ( int i = 0; i < size; i++) { mp.Add(a[i], i); } } // Driver Code public static void Main(String[] args) { int n = 7; mp = new Dictionary< int , int >(); v = new List<List< int >>(); a = new List< int >(); for ( int i = 0; i < n + 1; i++) v.Add( new List< int >()); // Add edges of a tree addEdge(1, 2); addEdge(1, 3); addEdge(2, 4); addEdge(2, 5); addEdge(4, 6); addEdge(4, 7); // Array to store the height of subtree // of every node in a tree int []under = new int [n + 1]; // Call the function DFS to generate the DFS dfs(under, 1, 0); // Function call to mark the index of node markIndexDfs(); int m = 3; // Query 1 Console.WriteLine( printnodeDFSofSubtree(1, under, m)); // Query 2 m = 4; Console.WriteLine( printnodeDFSofSubtree(2, under, m)); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // Javascript program for Queries for DFS // of subtree of a node in a tree // Adjacency list to store the // tree nodes connection var v = []; // Stores the index of node in DFS var mp = new Map(); // Stores the index of node in // original node var a = []; // Function to call DFS and count nodes // under that subtree function dfs(under, child, parent) { // Stores the DFS of tree a.push(child); // Height of subtree under[child] = 1; // Iterate for children for ( var it of v[child]) { // If not equal to parent so // that it does not traverse back if (it != parent) { // Call DFS for subtree dfs(under, it, child); // Push the height under[child] += under[it]; } } } // Function to return the DFS of subtree of node function printnodeDFSofSubtree(node, under, m) { // Index of node in the original DFS var ind = mp.get(node); // Height of subtree of node return a[ind + m - 1]; } // Function to add edges to a tree function addEdge(x, y) { v[x].push(y); v[y].push(x); } // Marks the index of node in original DFS function markIndexDfs() { var size = a.length; // Marks the index for ( var i = 0; i < size; i++) { mp.set(a[i], i); } } // Driver Code var n = 7; mp = new Map(); v = []; a = []; for ( var i = 0; i < n + 1; i++) v.push(Array()); // Push edges of a tree addEdge(1, 2); addEdge(1, 3); addEdge(2, 4); addEdge(2, 5); addEdge(4, 6); addEdge(4, 7); // Array to store the height of subtree // of every node in a tree var under = new Array(n + 1); // Call the function DFS to generate the DFS dfs(under, 1, 0); // Function call to mark the index of node markIndexDfs(); var m = 3; // Query 1 document.write(printnodeDFSofSubtree( 1, under, m) + "<br>" ); // Query 2 m = 4; document.write(printnodeDFSofSubtree( 2, under, m)); // This code is contributed by rutvik_56 </script> |
4 7
Complexity Analysis:
- Time Complexity: O(1), for processing each query.
- Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!