With the help of sympy.integrate()
method, we can find the integration of mathematical expressions in the form of variables by using sympy.integrate()
method.
Syntax :
sympy.integrate(expression, reference variable)
Return : Return integration of mathematical expression.
Example #1 :
In this example we can see that by using sympy.integrate()
method, we can find the integration of mathematical expression with variables. Here we use symbols()
method also to declare a variable as symbol.
# import sympy from sympy import * x, y = symbols( 'x y' ) gfg_exp = sin(x) * exp(x) print ( "Before Integration : {}" . format (gfg_exp)) # Use sympy.integrate() method intr = integrate(gfg_exp, x) print ( "After Integration : {}" . format (intr)) |
Output :
Before Integration : exp(x)*sin(x)
After Integration : exp(x)*sin(x)/2 – exp(x)*cos(x)/2
Example #2 :
# import sympy from sympy import * x, y = symbols( 'x y' ) gfg_exp = sin(x) * tan(x) print ( "Before Integration : {}" . format (gfg_exp)) # Use sympy.integrate() method intr = integrate(gfg_exp, x) print ( "After Integration : {}" . format (intr)) |
Output :
Before Integration : sin(x)*tan(x)
After Integration : -log(sin(x) – 1)/2 + log(sin(x) + 1)/2 – sin(x)