Thursday, December 26, 2024
Google search engine
HomeLanguagesPython | Pandas DataFrame.blocks

Python | Pandas DataFrame.blocks

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.

Pandas DataFrame.blocks attribute is synonym for as_blocks() function. It basically convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

Syntax: DataFrame.blocks

Parameter : None

Returns : dict

Example #1: Use DataFrame.blocks attribute to return a dictionary containing the data in blocks of separate data types.




# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
                   'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age':[14, 25, 55, 8, 21]})
  
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)


Output :

Now we will use DataFrame.blocks attribute to return the block representation of the given dataframe.




# return a dictionary
result = df.blocks
  
# Print the result
print(result)


Output :

As we can see in the output, the DataFrame.blocks attribute has successfully returned a dictionary containing the data of the dataframe. Homogeneous columns are places in the same block.
 
Example #2: Use DataFrame.blocks attribute to return a dictionary containing the data in blocks of separate data types.




# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({"A":[12, 4, 5, None, 1], 
                   "B":[7, 2, 54, 3, None], 
                   "C":[20, 16, 11, 3, 8], 
                   "D":[14, 3, None, 2, 6]}) 
  
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)


Output :

Now we will use DataFrame.blocks attribute to return the block representation of the given dataframe.




# return a dictionary
result = df.blocks
  
# Print the result
print(result)


Output :

As we can see in the output, the DataFrame.blocks attribute has successfully returned a dictionary containing the data of the dataframe. Homogeneous columns are places in the same block.

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments