In this article, we will discuss how to groupby PySpark DataFrame and then sort it in descending order.
Methods Used
- groupBy(): The groupBy() function in pyspark is used for identical grouping data on DataFrame while performing an aggregate function on the grouped data.
Syntax: DataFrame.groupBy(*cols)
Parameters:
- cols→ Columns by which we need to group data
- sort(): The sort() function is used to sort one or more columns. By default, it sorts by ascending order.
Syntax: sort(*cols, ascending=True)
Parameters:
- cols→ Columns by which sorting is needed to be performed.
- PySpark DataFrame also provides orderBy() function that sorts one or more columns. By default, it orders by ascending.
Syntax: orderBy(*cols, ascending=True)
Parameters:
- cols→ Columns by which sorting is needed to be performed.
- ascending→ Boolean value to say that sorting is to be done in ascending order
Example 1: In this example, we are going to group the dataframe by name and aggregate marks. We will sort the table using the sort() function in which we will access the column using the col() function and desc() function to sort it in descending order.
Python3
# import the required modules from pyspark.sql import SparkSession from pyspark.sql.functions import avg, col, desc # Start spark session spark = SparkSession.builder.appName( "GeeksForGeeks" ).getOrCreate() # Define sample data simpleData = [( "Pulkit" , "trial_1" , 32 ), ( "Ritika" , "trial_1" , 42 ), ( "Pulkit" , "trial_2" , 45 ), ( "Ritika" , "trial_2" , 50 ), ( "Ritika" , "trial_3" , 62 ), ( "Pulkit" , "trial_3" , 55 ), ( "Ritika" , "trial_4" , 75 ), ( "Pulkit" , "trial_4" , 70 ) ] # define the schema schema = [ "Name" , "Number_of_Trials" , "Marks" ] # create a dataframe df = spark.createDataFrame(data = simpleData, schema = schema) # group by name and aggregate using # average marks sort the column using # col and desc() function df.groupBy( "Name" ) \ .agg(avg( "Marks" ).alias( "Avg_Marks" )) \ .sort(col( "Avg_Marks" ).desc()) \ .show() # stop spark session spark.stop() |
Output:
Example 2: In this example, we are going to group the dataframe by name and aggregate marks. We will sort the table using the sort() function in which we will access the column within the desc() function to sort it in descending order.
Python3
# import the required modules from pyspark.sql import SparkSession from pyspark.sql.functions import avg, col, desc # Start spark session spark = SparkSession.builder.appName( "Student_Info" ).getOrCreate() # sample dataset simpleData = [( "Pulkit" , "trial_1" , 32 ), ( "Ritika" , "trial_1" , 42 ), ( "Pulkit" , "trial_2" , 45 ), ( "Ritika" , "trial_2" , 50 ), ( "Ritika" , "trial_3" , 62 ), ( "Pulkit" , "trial_3" , 55 ), ( "Ritika" , "trial_4" , 75 ), ( "Pulkit" , "trial_4" , 70 ) ] # define the schema to be used schema = [ "Name" , "Number_of_Trials" , "Marks" ] # create the dataframe df = spark.createDataFrame(data = simpleData, schema = schema) # perform groupby operation on name table # aggregate marks and give it a new name # sort in descending order by avg_marks df.groupBy( "Name" ) \ .agg(avg( "Marks" ).alias( "Avg_Marks" )) \ .sort(desc( "Avg_Marks" )) \ .show() # stop sparks session spark.stop() |
Output:
Example 3: In this example, we are going to group the dataframe by name and aggregate marks. We will sort the table using the orderBy() function in which we will pass ascending parameter as False to sort the data in descending order.
Python3
# import required modules from pyspark.sql import SparkSession from pyspark.sql.functions import avg, col, desc # Start spark session spark = SparkSession.builder.appName( "Student_Info" ).getOrCreate() # sample dataset simpleData = [( "Pulkit" , "trial_1" , 32 ), ( "Ritika" , "trial_1" , 42 ), ( "Pulkit" , "trial_2" , 45 ), ( "Ritika" , "trial_2" , 50 ), ( "Ritika" , "trial_3" , 62 ), ( "Pulkit" , "trial_3" , 55 ), ( "Ritika" , "trial_4" , 75 ), ( "Pulkit" , "trial_4" , 70 ) ] # define the schema schema = [ "Name" , "Number_of_Trials" , "Marks" ] # create a dataframe df = spark.createDataFrame(data = simpleData, schema = schema) df.groupBy( "Name" )\ .agg(avg( "Marks" ).alias( "Avg_Marks" ))\ .orderBy( "Avg_Marks" , ascending = False )\ .show() # stop sparks session spark.stop() |
Output: