Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPrinting the Triangle Pattern using last term N

Printing the Triangle Pattern using last term N

Given a number N which represents the last term of the Triangle Pattern. The task is to print the Triangle Pattern from 1 to N, such that each row is complete.
Triangle Pattern is given as: 
 

   1
  2 3
 4 5 6
7 8 9 10
.
.

Examples: 
 

Input: N = 3
Output:
 1
2 3

Input: N = 7
Output:
   1
  2 3
 4 5 6

7 will not be printed as 
it would result in an incomplete row

 

Approach: 
 

  • Find the number of complete rows from the given last term N. 
    • As: 
      For Max Height = 1, the last term would be 1 
      For Max Height = 2, the last term would be 3 
      For Max Height = 3, the last term would be 6
    • So the last term forms a pattern: 1, 3, 6, 10, 15,…
    • Therefore, the n-th term of series 1, 3, 6, 10, 15,… 
      A(n) = 1 + 2 + 3 + 4… + (n – 1) + n 
      = n(n + 1) / 2
      i.e A(n) is the sum of First n natural numbers.
    • So in 
    A(n) = n(n + 1) / 2
    A(n) represents the last term (as per our problem),
    and n represents the max height of the Triangle
  • Hence this can be seen as: 
    Last term = height (height + 1) / 2
  • Therefore, 
    height = (-1 + sqrt(1 + 8*lastTerm)) / 2
  • After finding the max height, the triangle pattern can be easily printed.

Below is the implementation of the above approach:

C++




// C++ code for printing the
// Triangle Pattern using last term N
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to demonstrate printing pattern
void triangle(int n)
{
    // number of spaces
    int k = 2 * n - 2;
 
    // character to be printed
    int ch = 1;
 
    // outer loop to handle number of rows
    // n in this case
    for (int i = 0; i < n; i++) {
 
        // inner loop to handle number spaces
        // values changing acc. to requirement
        for (int j = 0; j < k; j++)
            cout << " ";
 
        // decrementing k after each loop
        k = k - 1;
 
        // inner loop to handle number of columns
        // values changing acc. to outer loop
        for (int j = 0; j <= i; j++) {
            // printing stars
            cout << ch++ << " ";
        }
 
        // ending line after each row
        cout << endl;
    }
}
 
// Function to find the max height
// or the number of lines
// in the triangle pattern
int maxHeight(int n)
{
    return (((int)sqrt(1 + 8.0 * n)) - 1) / 2;
}
 
// Driver Function
int main()
{
    int N = 9;
    triangle(maxHeight(N));
    return 0;
}


Java




// Java code for printing the
// Triangle Pattern using last term N
import java.util.*;
 
class GFG
{
 
// Function to demonstrate printing pattern
static void triangle(int n)
{
    // number of spaces
    int k = 2 * n - 2;
 
    // character to be printed
    int ch = 1;
 
    // outer loop to handle number of rows
    // n in this case
    for (int i = 0; i < n; i++)
    {
 
        // inner loop to handle number spaces
        // values changing acc. to requirement
        for (int j = 0; j < k; j++)
            System.out.print(" ");
 
        // decrementing k after each loop
        k = k - 1;
 
        // inner loop to handle number of columns
        // values changing acc. to outer loop
        for (int j = 0; j <= i; j++)
        {
            // printing stars
            System.out.print(ch++ + " ");
        }
 
        // ending line after each row
        System.out.println();
    }
}
 
// Function to find the max height
// or the number of lines
// in the triangle pattern
static int maxHeight(int n)
{
    return (((int)Math.sqrt(1 + 8.0 * n)) - 1) / 2;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 9;
    triangle(maxHeight(N));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 code for printing the
# Triangle Pattern using last term N
from math import sqrt
 
# Function to demonstrate printing pattern
def triangle(n) :
 
    # number of spaces
    k = 2 * n - 2;
 
    # character to be printed
    ch = 1;
 
    # outer loop to handle number of rows
    # n in this case
    for i in range(n) :
 
        # inner loop to handle number spaces
        # values changing acc. to requirement
        for j in range(k) :
            print(" ", end = "");
 
        # decrementing k after each loop
        k = k - 1;
 
        # inner loop to handle number of columns
        # values changing acc. to outer loop
        for j in range(i + 1) :
             
            # printing stars
            print(ch, end = " ");
            ch += 1;
             
        # ending line after each row
        print()
 
# Function to find the max height
# or the number of lines
# in the triangle pattern
def maxHeight(n) :
    ans = (sqrt(1 + 8.0 * n) - 1) // 2;
    return int(ans);
 
# Driver Code
if __name__ == "__main__" :
 
    N = 9;
    triangle(maxHeight(N));
     
# This code is contributed by AnkitRai01


C#




// C# code for printing the
// Triangle Pattern using last term N
using System;
     
class GFG
{
 
// Function to demonstrate printing pattern
static void triangle(int n)
{
    // number of spaces
    int k = 2 * n - 2;
 
    // character to be printed
    int ch = 1;
 
    // outer loop to handle number of rows
    // n in this case
    for (int i = 0; i < n; i++)
    {
 
        // inner loop to handle number spaces
        // values changing acc. to requirement
        for (int j = 0; j < k; j++)
            Console.Write(" ");
 
        // decrementing k after each loop
        k = k - 1;
 
        // inner loop to handle number of columns
        // values changing acc. to outer loop
        for (int j = 0; j <= i; j++)
        {
            // printing stars
            Console.Write(ch++ + " ");
        }
 
        // ending line after each row
        Console.WriteLine();
    }
}
 
// Function to find the max height
// or the number of lines
// in the triangle pattern
static int maxHeight(int n)
{
    return (((int)Math.Sqrt(1 + 8.0 * n)) - 1) / 2;
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 9;
    triangle(maxHeight(N));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// Javascript code for printing the
// Triangle Pattern using last term N
 
// Function to demonstrate printing pattern
function triangle(n)
{
 
    // number of spaces
    var k = 2 * n - 2;
 
    // character to be printed
    var ch = 1;
 
    // outer loop to handle number of rows
    // n in this case
    for (var i = 0; i < n; i++) {
 
        // inner loop to handle number spaces
        // values changing acc. to requirement
        for (var j = 0; j < k; j++)
            document.write(" ");
 
        // decrementing k after each loop
        k = k - 1;
 
        // inner loop to handle number of columns
        // values changing acc. to outer loop
        for (var j = 0; j <= i; j++) {
            // printing stars
            document.write(ch++ + "&nbsp");
        }
 
        // ending line after each row
        document.write("<br>");
    }
}
 
// Function to find the max height
// or the number of lines
// in the triangle pattern
function maxHeight(n)
{
    return parseInt(((parseInt(Math.sqrt(1 + 8.0 * n))) - 1) / 2);
}
 
// Driver Function
var N = 9;
triangle(maxHeight(N));
 
// This code is contributed by noob2000.
</script>


Output: 

    1 
   2 3 
  4 5 6

 

Time Complexity: O(n2)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments