Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPrint the Longest Subarray whose Bitwise AND is maximum

Print the Longest Subarray whose Bitwise AND is maximum

Given a positive integer array arr[] of size N, the task is to print the longest non-empty subarray whose bitwise AND is maximum in the array.

Examples:

Input: arr[ ] = {1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7}
Output: 7, 7, 7, 7
Explanation: The maximum Bitwise AND is 7 and the longest subarray whose bitwise AND is 7 is from index 8 to index 11.

Input: arr[ ]={3, 2, 6, 9, 4}
Output: 9

Naive Approach

The idea is to find all subarray and in those subarrays pick those subarrays which has maximum Bitwise AND. After that return/print that subarray which has the longest length

Steps to implement-

  • Declare a variable temp to store the maximum BITWISE AND.
  • Declare a vector ans to store final answer
  • Run two loops to find all subarrays
  • Simultaneously find the length of subarray and BIWISE AND of all the values of the subarray
  • If any subarray has BITWISE AND more than previously found maximum BITWISE AND, then store this subarray in the vector after removing previously stored elements
  • If any subarray has BITWISE AND equal to the previously found maximum BITWISE AND, then check the length of this subarray and previously stored subarray.
    • If its length is more than the previously stored subarray then store this subarray in the vector after removing previously stored elements

Code-

C++




// C++ Implementation
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the
// longest subarray whose bitwise AND is maximum
int longestSubarray(vector<int>& arr, int N)
{
 
    // To store largest BITWISE AND
    int temp = INT_MIN;
 
    // To store answer
    vector<int> ans;
 
    // To find all subarray
    for (int i = 0; i < N; i++) {
        // To store BITWISE AND of Subarray
        int val = INT_MIN;
 
        // To store length of subarray
        int length = 0;
        for (int j = i; j < N; j++) {
 
            // Increment the length of subarray
            length++;
 
            // Take BIWISE AND
            if (val == INT_MIN) {
                val = arr[j];
            }
            else {
                val = val & arr[j];
            }
 
            // When BITWISE AND of this subarray is
            // larger than previously stored BIWISE AND
            if (val > temp) {
                temp = val;
                ans.clear();
                for (int k = i; k <= j; k++) {
                    ans.push_back(arr[k]);
                }
            }
            // When BITWISE AND of this subarray is
            // equal to previously stored BIWISE AND
            // but has larger length than previously
            // stored subarray
            else if (val == temp && length > ans.size()) {
                temp = val;
                ans.clear();
                for (int k = i; k <= j; k++) {
                    ans.push_back(arr[k]);
                }
            }
        }
    }
 
    // Print Final answer
    for (int i = 0; i < ans.size(); i++) {
        cout << ans[i] << " ";
    }
    cout << endl;
}
 
// Driver Code
int main()
{
    vector<int> arr
        = { 1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7 };
    int N = arr.size();
 
    // Function call
    longestSubarray(arr, N);
 
    return 0;
}


Java




//Java Implementation
import java.util.ArrayList;
import java.util.List;
 
class GFG {
    // Function to find the length of the longest subarray
    // whose bitwise AND is maximum
    public static void longestSubarray(List<Integer> arr, int N) {
        // To store largest BITWISE AND
        int temp = Integer.MIN_VALUE;
 
        // To store answer
        List<Integer> ans = new ArrayList<>();
 
        // To find all subarrays
        for (int i = 0; i < N; i++) {
            // To store BITWISE AND of Subarray
            int val = Integer.MIN_VALUE;
 
            // To store length of subarray
            int length = 0;
            for (int j = i; j < N; j++) {
                // Increment the length of subarray
                length++;
 
                // Take BITWISE AND
                if (val == Integer.MIN_VALUE) {
                    val = arr.get(j);
                } else {
                    val = val & arr.get(j);
                }
 
                // When BITWISE AND of this subarray is
                // larger than previously stored BITWISE AND
                if (val > temp) {
                    temp = val;
                    ans.clear();
                    for (int k = i; k <= j; k++) {
                        ans.add(arr.get(k));
                    }
                }
                // When BITWISE AND of this subarray is
                // equal to previously stored BITWISE AND
                // but has larger length than previously
                // stored subarray
                else if (val == temp && length > ans.size()) {
                    temp = val;
                    ans.clear();
                    for (int k = i; k <= j; k++) {
                        ans.add(arr.get(k));
                    }
                }
            }
        }
 
        // Print Final answer
        for (int i = 0; i < ans.size(); i++) {
            System.out.print(ans.get(i) + " ");
        }
        System.out.println();
    }
 
    // Driver Code
    public static void main(String[] args) {
        List<Integer> arr = new ArrayList<>();
        arr.add(1);
        arr.add(5);
        arr.add(5);
        arr.add(2);
        arr.add(2);
        arr.add(2);
        arr.add(4);
        arr.add(5);
        arr.add(7);
        arr.add(7);
        arr.add(7);
        arr.add(7);
        int N = arr.size();
 
        // Function call
        longestSubarray(arr, N);
    }
}
 
 
// This code is contributed by Vaibhav Nandan


Python3




# Function to find the length of the
# longest subarray whose bitwise AND is maximum
def longestSubarray(arr, N):
    # To store largest BITWISE AND
    temp = float('-inf')
    # To store answer
    ans = []
    # To find all subarray
    for i in range(N):
           # To store BITWISE AND of Subarray
        val = float('-inf')
        # To store length of subarray
        length = 0
         
        for j in range(i, N):
            #  Increment the length of subarray    
            length += 1
             
            # Take BIWISE AND
            if val == float('-inf'):
                val = arr[j]
            else:
                val = val & arr[j]
             
            #  When BITWISE AND of this subarray is
            # larger than previously stored BIWISE AND
            if val > temp:
                temp = val
                ans = arr[i:j+1]
            # When BITWISE AND of this subarray is
            # equal to previously stored BIWISE AND
            # but has larger length than previously
            # stored subarray
            elif val == temp and length > len(ans):
                temp = val
                ans = arr[i:j+1]
     
    # Print Final answer
    for num in ans:
        print(num, end=' ')
    print()
 
# Test case
arr = [1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7]
N = len(arr)
 
longestSubarray(arr, N)


C#




using System;
using System.Collections.Generic;
 
class Program
{
      // Driver Code
    static void Main(string[] args)
    {
        List<int> arr = new List<int> { 1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7 };
        int N = arr.Count;
        LongestSubarray(arr, N);
    }
 
      // Function to find the length of the
    // longest subarray whose bitwise AND is maximum
    static void LongestSubarray(List<int> arr, int N)
    {
          // To store largest BITWISE AND
        int temp = int.MinValue;
       
          // To store answer
        List<int> ans = new List<int>();
 
          // To find all subarray
        for (int i = 0; i < N; i++)
        {
              // To store BITWISE AND of Subarray
            int val = int.MinValue;
           
              // To store length of subarray
            int length = 0;
 
            for (int j = i; j < N; j++)
            {   
               
                  // Increment the length of subarray
                length++;
 
                  // Take BIWISE AND
                if (val == int.MinValue)
                {
                    val = arr[j];
                }
                else
                {
                    val = val & arr[j];
                }
 
                  // When BITWISE AND of this subarray is
                    // larger than previously stored BIWISE AND
                if (val > temp)
                {
                    temp = val;
                    ans.Clear();
 
                    for (int k = i; k <= j; k++)
                    {
                        ans.Add(arr[k]);
                    }
                }
               
                  // When BITWISE AND of this subarray is
                  // equal to previously stored BIWISE AND
                // but has larger length than previously
                  // stored subarray
                else if (val == temp && length > ans.Count)
                {
                    temp = val;
                    ans.Clear();
 
                    for (int k = i; k <= j; k++)
                    {
                        ans.Add(arr[k]);
                    }
                }
            }
        }
 
          // Print Final answer
        foreach (int num in ans)
        {
            Console.Write(num + " ");
        }
 
        Console.WriteLine();
    }
}


Javascript




// Javascript Implementation
 
// Function to find the length of the
// longest subarray whose bitwise AND is maximum
function longestSubarray(arr) {
  // To store largest BITWISE AND
  let temp = -Infinity;
    // To store answer
  let ans = [];
    // To find all subarray
  for (let i = 0; i < arr.length; i++) {
      // To store BITWISE AND of Subarray
    let val = -Infinity;
        // To store length of subarray
    let length = 0;
    for (let j = i; j < arr.length; j++) {
          // Increment the length of subarray
      length++;
            // Take BITWISE AND
      if (val === -Infinity) {
        val = arr[j];
      } else {
        val = val & arr[j];
      }
       // When BITWISE AND of this subarray is
      // larger than previously stored BITWISE AND
      if (val > temp) {
        temp = val;
        ans = arr.slice(i, j + 1);
      }
       // When BITWISE AND of this subarray is
      // equal to previously stored BITWISE AND
      // but has larger length than previously
      // stored subarray
      else if (val === temp && length > ans.length) {
        temp = val;
        ans = arr.slice(i, j + 1);
      }
    }
  }
    // Print Final answer
  console.log(ans.join(" "));
}
// Driver Code
const arr = [1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7];
// Function call
longestSubarray(arr);


Output-

7 7 7 7 

Time Complexity: O(N3), because of two nested loops to find all subarray and a third loop to insert required subarray into vector
Auxiliary Space: O(N), for storing answer

Approach: The approach for code will be:

It is always better to take the maximum element and find the longest continous subarray having only the maximum element of the array.

Steps involved in the implementation of the code:

  • Find the maximum value in the array using a loop and keep it in the variable maxi_val.
  • Initialize two variables count and maxi to 1. count will keep track of the length of the current subarray with the maximum element repeated, and maxi will keep track of the maximum length seen so far.
  • Traverse the array using a loop,  and find the length of length occurring the same element. 

Below is the implementation for the above approach:

C++




// C++ Implementation
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the
// longest subarray with the
// maximum element repeated
int longestSubarray(vector<int>& nums)
{
 
    // Find the maximum value in the array
    int maxi_val = 0;
    for (int i = 0; i < nums.size(); i++)
        maxi_val = max(maxi_val, nums[i]);
 
    int count = 1, maxi = 1;
 
    // Traverse the array and count the
    // length of the longest subarray with
    // the maximum element repeated
    for (int i = 0; i < nums.size() - 1; i++) {
 
        // If the current element is equal
        // to the maximum element and the
        // next element is also equal to it,
        // increment the count
        if (nums[i] == maxi_val && nums[i] == nums[i + 1])
            count++;
        else
 
            // If not, reset the count to 1
            count = 1;
 
        // Update the maximum
        // length seen so far
        maxi = max(maxi, count);
    }
 
    // Print maximum subarray
    int i = 0;
    while (i < maxi) {
 
        cout << maxi_val << " ";
        i++;
    }
}
 
// Driver Code
int main()
{
    vector<int> arr
        = { 1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    longestSubarray(arr);
 
    return 0;
}


Java




// Java implementation
 
import java.util.*;
 
public class GFG {
    // Function to find the length of the
    // longest subarray with the
    // maximum element repeated
    public static void longestSubarray(List<Integer> nums) {
        // Find the maximum value in the array
        int maxi_val = 0;
        for (int i = 0; i < nums.size(); i++) {
            maxi_val = Math.max(maxi_val, nums.get(i));
        }
 
        int count = 1, maxi = 1;
 
        // Traverse the array and count the
        // length of the longest subarray with
        // the maximum element repeated
        for (int i = 0; i < nums.size() - 1; i++) {
            // If the current element is equal
            // to the maximum element and the
            // next element is also equal to it,
            // increment the count
            if (nums.get(i) == maxi_val && nums.get(i) == nums.get(i + 1)) {
                count++;
            } else {
                // If not, reset the count to 1
                count = 1;
            }
            // Update the maximum
            // length seen so far
            maxi = Math.max(maxi, count);
        }
 
        // Print maximum subarray
        int i = 0;
        while (i < maxi) {
            System.out.print(maxi_val + " ");
            i++;
        }
    }
 
    // Driver Code
    public static void main(String[] args) {
        List<Integer> arr = new ArrayList<>(Arrays.asList(1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7));
        longestSubarray(arr);
    }
}


Python3




def longestSubarray(nums):
# Find the maximum value in the array
  maxi_val = 0
  for i in range(len(nums)):
      maxi_val = max(maxi_val, nums[i])
 
  count = 1
  maxi = 1
 
  # Traverse the array and count the
  # length of the longest subarray with
  # the maximum element repeated
  for i in range(len(nums) - 1):
      # If the current element is equal
      # to the maximum element and the
      # next element is also equal to it,
      # increment the count
      if nums[i] == maxi_val and nums[i] == nums[i + 1]:
          count += 1
      else:
          # If not, reset the count to 1
          count = 1
      # Update the maximum
      # length seen so far
      maxi = max(maxi, count)
 
  # Print maximum subarray
  i = 0
  while i < maxi:
      print(maxi_val, end=" ")
      i += 1
arr = [1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7]
longestSubarray(arr)


C#




// C# code implementation
 
using System;
 
public class GFG {
 
    // Function to find the length of the longest subarray
    // with the maximum element repeated
    static void longestSubarray(int[] nums)
    {
        // Find the maximum value in the array
        int maxi_val = 0;
        for (int i = 0; i < nums.Length; i++)
            maxi_val = Math.Max(maxi_val, nums[i]);
 
        int count = 1, maxi = 1;
 
        // Traverse the array and count the length of the
        // longest subarray with the maximum element
        // repeated
        for (int i = 0; i < nums.Length - 1; i++) {
            // If the current element is equal to the
            // maximum element and the next element is also
            // equal to it, increment the count
            if (nums[i] == maxi_val
                && nums[i] == nums[i + 1])
                count++;
            else
 
                // If not, reset the count to 1
                count = 1;
 
            // Update the maximum length seen so far
            maxi = Math.Max(maxi, count);
        }
 
        // Print maximum subarray
        int k = 0;
        while (k < maxi) {
            Console.Write(maxi_val + " ");
            k++;
        }
    }
 
    static public void Main()
    {
 
        // Code
        int[] arr = { 1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7 };
        int N = arr.Length;
 
        // Function call
        longestSubarray(arr);
    }
}
 
// This code is contributed by lokesh.


Javascript




// Function to find the length of the
// longest subarray with the
// maximum element repeated
function longestSubarray(nums) {
 
    // Find the maximum value in the array
    let maxi_val = 0;
    for (let i = 0; i < nums.length; i++)
        maxi_val = Math.max(maxi_val, nums[i]);
 
    let count = 1, maxi = 1;
 
    // Traverse the array and count the
    // length of the longest subarray with
    // the maximum element repeated
    for (let i = 0; i < nums.length - 1; i++) {
 
        // If the current element is equal
        // to the maximum element and the
        // next element is also equal to it,
        // increment the count
        if (nums[i] == maxi_val && nums[i] == nums[i + 1])
            count++;
        else
 
            // If not, reset the count to 1
            count = 1;
 
        // Update the maximum
        // length seen so far
        maxi = Math.max(maxi, count);
    }
 
    // Print maximum subarray
    let i = 0;
    while (i < maxi) {
 
        console.log(maxi_val + " ");
        i++;
    }
 
    return maxi;
}
 
// Driver Code
let arr = [1, 5, 5, 2, 2, 2, 4, 5, 7, 7, 7, 7];
let result = longestSubarray(arr);
console.log("Length of longest subarray with maximum element repeated is: " + result);


Output

7 7 7 7 








Time Complexity: O(n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments