Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIPrint all Coprime path of a Binary Tree

Print all Coprime path of a Binary Tree

Given a Binary Tree, the task is to print all the co-prime paths of this tree. 

A path of a binary tree is said to be a co-prime path if all the nodes of this path are co-prime to each other.

Examples: 

Input: 
                 1
                /  \ 
              12    11
             /     /   \ 
            3     4     13 
                   \    / 
                   15   3  
Output: 
 1 11 4 15
 1 11 13 3
Explanation: 
{1, 11, 4, 15} and {1, 11, 13, 3}
are coprimes because their GCD is 1.

Input:
                  5
                /  \ 
              21     77 
             /  \      \
            61   16     16 
                  \    / 
                   10  3    
                   /
                  23 
Output:
 5 21 61
 5 77 16 3
Explanation: 
{5, 21, 61} and {5, 77, 16, 3} 
are coprimes because their GCD is 1.

Approach: The idea is to traverse the tree and check if all the elements in that path are coprime or not. So, an efficient solution is to generate all the prime factors of the integers by using the Sieve of Eratosthenes. Using hash, store the count of every element which is a prime factor of any of the number in the array. If the element does not contain any common prime factor with other elements, it always forms a co-prime pair with other elements.

Below is the implementation of the above approach: 

C++




// C++ program for printing Co-prime
// paths of binary Tree
 
#include <bits/stdc++.h>
using namespace std;
 
// A Tree node
struct Node {
    int key;
    struct Node *left, *right;
};
 
// Utility function to create
// a new node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
    temp->left = temp->right = NULL;
    return (temp);
}
 
int N = 1000000;
 
// Vector to store all the
// prime numbers
vector<int> prime;
 
// Function to store all the
// prime numbers in an array
void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..N]"
    // and initialize all the entries in it
    // as true. A value in prime[i]
    // will finally be false if
    // i is Not a prime, else true.
    bool check[N + 1];
    memset(check, true, sizeof(check));
 
    for (int p = 2; p * p <= N; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (check[p] == true) {
 
            prime.push_back(p);
 
            // Update all multiples of p
            // greater than or equal to
            // the square of it
            // numbers which are multiples of p
            // and are less than p^2
            // are already marked.
            for (int i = p * p; i <= N; i += p)
                check[i] = false;
        }
    }
}
 
// Function to check whether Path
// is Co-prime or not
bool isPathCo_Prime(vector<int>& path)
{
 
    int max = 0;
 
    // Iterating through the array
    // to find the maximum element
    // in the array
    for (auto x : path) {
        if (max < x)
            max = x;
    }
 
    for (int i = 0;
         i * prime[i] <= max / 2;
         i++) {
 
        int ct = 0;
 
        // Incrementing the variable
        // if any of the value has
        // a factor
        for (auto x : path) {
            if (x % prime[i] == 0)
                ct++;
        }
 
        // If not co-prime
        if (ct > 1) {
            return false;
        }
    }
 
    return true;
}
 
// Function to print a Co-Prime path
void printCo_PrimePaths(vector<int>& path)
{
    for (auto x : path) {
        cout << x << " ";
    }
 
    cout << endl;
}
 
// Function to find co-prime paths of
// binary tree
void findCo_PrimePaths(struct Node* root,
                       vector<int>& path)
{
    // Base case
    if (root == NULL)
        return;
 
    // Store the value in path vector
    path.push_back(root->key);
 
    // Recursively call for left sub tree
    findCo_PrimePaths(root->left, path);
 
    // Recursively call for right sub tree
    findCo_PrimePaths(root->right, path);
 
    // Condition to check, if leaf node
    if (root->left == NULL
        && root->right == NULL) {
 
        // Condition to check,
        // if path co-prime or not
        if (isPathCo_Prime(path)) {
 
            // Print co-prime path
            printCo_PrimePaths(path);
        }
    }
 
    // Remove the last element
    // from the path vector
    path.pop_back();
}
 
// Function to find Co-Prime paths
// In a given binary tree
void printCo_PrimePaths(struct Node* node)
{
    // To save all prime numbers
    SieveOfEratosthenes();
 
    vector<int> path;
    // Function call
    findCo_PrimePaths(node, path);
}
 
// Driver Code
int main()
{
    /*         10 
            /   \ 
           48    3 
               /   \ 
              11    37 
              / \   / \ 
             7  29 42 19 
                      
                     
    */
 
    // Create Binary Tree as shown
    Node* root = newNode(10);
    root->left = newNode(48);
    root->right = newNode(3);
 
    root->right->left = newNode(11);
    root->right->right = newNode(37);
 
    root->right->left->left = newNode(7);
    root->right->left->right = newNode(29);
    root->right->right->left = newNode(42);
    root->right->right->right = newNode(19);
    root->right->right->right->left = newNode(7);
 
    // Print Co-Prime Paths
    printCo_PrimePaths(root);
 
    return 0;
}


Java




// Java program for printing Co-prime
// paths of binary Tree
import java.util.*;
 
class GFG{
  
// A Tree node
static class Node {
    int key;
    Node left, right;
};
  
// Utility function to create
// a new node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return (temp);
}
  
static int N = 1000000;
  
// Vector to store all the
// prime numbers
static Vector<Integer> prime = new Vector<Integer>();
  
// Function to store all the
// prime numbers in an array
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..N]"
    // and initialize all the entries in it
    // as true. A value in prime[i]
    // will finally be false if
    // i is Not a prime, else true.
    boolean []check = new boolean[N + 1];
    Arrays.fill(check, true);
  
    for (int p = 2; p * p <= N; p++) {
  
        // If prime[p] is not changed,
        // then it is a prime
        if (check[p] == true) {
  
            prime.add(p);
  
            // Update all multiples of p
            // greater than or equal to
            // the square of it
            // numbers which are multiples of p
            // and are less than p^2
            // are already marked.
            for (int i = p * p; i <= N; i += p)
                check[i] = false;
        }
    }
}
  
// Function to check whether Path
// is Co-prime or not
static boolean isPathCo_Prime(Vector<Integer> path)
{
  
    int max = 0;
  
    // Iterating through the array
    // to find the maximum element
    // in the array
    for (int x : path) {
        if (max < x)
            max = x;
    }
  
    for (int i = 0;
         i * prime.get(i) <= max / 2;
         i++) {
  
        int ct = 0;
  
        // Incrementing the variable
        // if any of the value has
        // a factor
        for (int x : path) {
            if (x % prime.get(i) == 0)
                ct++;
        }
  
        // If not co-prime
        if (ct > 1) {
            return false;
        }
    }
  
    return true;
}
  
// Function to print a Co-Prime path
static void printCo_PrimePaths(Vector<Integer> path)
{
    for (int x : path) {
        System.out.print(x+ " ");
    }
  
    System.out.println();
}
  
// Function to find co-prime paths of
// binary tree
static void findCo_PrimePaths(Node root,
                       Vector<Integer> path)
{
    // Base case
    if (root == null)
        return;
  
    // Store the value in path vector
    path.add(root.key);
  
    // Recursively call for left sub tree
    findCo_PrimePaths(root.left, path);
  
    // Recursively call for right sub tree
    findCo_PrimePaths(root.right, path);
  
    // Condition to check, if leaf node
    if (root.left == null
        && root.right == null) {
  
        // Condition to check,
        // if path co-prime or not
        if (isPathCo_Prime(path)) {
  
            // Print co-prime path
            printCo_PrimePaths(path);
        }
    }
  
    // Remove the last element
    // from the path vector
    path.remove(path.size()-1);
}
  
// Function to find Co-Prime paths
// In a given binary tree
static void printCo_PrimePaths(Node node)
{
    // To save all prime numbers
    SieveOfEratosthenes();
  
    Vector<Integer> path = new Vector<Integer>();
    // Function call
    findCo_PrimePaths(node, path);
}
  
// Driver Code
public static void main(String[] args)
{
    /*         10 
            /   \ 
           48    3 
               /   \ 
              11    37 
              / \   / \ 
             7  29 42 19 
                      
                     
    */
  
    // Create Binary Tree as shown
    Node root = newNode(10);
    root.left = newNode(48);
    root.right = newNode(3);
  
    root.right.left = newNode(11);
    root.right.right = newNode(37);
  
    root.right.left.left = newNode(7);
    root.right.left.right = newNode(29);
    root.right.right.left = newNode(42);
    root.right.right.right = newNode(19);
    root.right.right.right.left = newNode(7);
  
    // Print Co-Prime Paths
    printCo_PrimePaths(root);
  
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program for printing Co-prime
# paths of binary Tree
 
# A Tree node
class Node:
     
    def __init__(self, key):
         
        self.key = key
        self.left = None
        self.right = None
         
# Utility function to create
# a new node
def newNode(key):
     
    temp = Node(key)
    return temp
 
N = 1000000
  
# Vector to store all the
# prime numbers
prime = []
  
# Function to store all the
# prime numbers in an array
def SieveOfEratosthenes():
     
    # Create a boolean array "prime[0..N]"
    # and initialize all the entries in it
    # as true. A value in prime[i]
    # will finally be false if
    # i is Not a prime, else true.
    check = [True for i in range(N + 1)]
     
    p = 2
     
    while (p * p <= N):
         
        # If prime[p] is not changed,
        # then it is a prime
        if (check[p]):
            prime.append(p)
             
            # Update all multiples of p
            # greater than or equal to
            # the square of it numbers
            # which are multiples of p
            # and are less than p^2
            # are already marked.
            for i in range(p * p, N + 1, p):
                check[i] = False
             
        p += 1   
         
# Function to check whether Path
# is Co-prime or not
def isPathCo_Prime(path):
     
    max = 0
     
    # Iterating through the array
    # to find the maximum element
    # in the array
    for x in path:
        if (max < x):
            max = x
             
    i = 0
     
    while (i * prime[i] <= max // 2):
        ct = 0
         
        # Incrementing the variable
        # if any of the value has
        # a factor
        for x in path:
            if (x % prime[i] == 0):
                ct += 1
  
        # If not co-prime
        if (ct > 1):
            return False
         
        i += 1
     
    return True
 
# Function to print a Co-Prime path
def printCo_PrimePaths(path):
     
    for x in path:
        print(x, end = ' ')
     
    print()
  
# Function to find co-prime paths of
# binary tree
def findCo_PrimePaths(root, path):
     
    # Base case
    if (root == None):
        return path
     
    # Store the value in path vector
    path.append(root.key)
  
    # Recursively call for left sub tree
    path = findCo_PrimePaths(root.left, path)
  
    # Recursively call for right sub tree
    path = findCo_PrimePaths(root.right, path)
  
    # Condition to check, if leaf node
    if (root.left == None and root.right == None):
         
        # Condition to check,
        # if path co-prime or not
        if (isPathCo_Prime(path)):
  
            # Print co-prime path
            printCo_PrimePaths(path)
         
    # Remove the last element
    # from the path vector
    path.pop()
     
    return path
 
# Function to find Co-Prime paths
# In a given binary tree
def printCo_PrimePath(node):
 
    # To save all prime numbers
    SieveOfEratosthenes()
     
    path = []
     
    # Function call
    path = findCo_PrimePaths(node, path)
     
# Driver code   
if __name__=="__main__":
     
    '''       10 
            /   \ 
           48    3 
               /   \ 
              11    37 
              / \   / \ 
             7  29 42 19 
                      
                     
    '''
  
    # Create Binary Tree as shown
    root = newNode(10)
 
    root.left = newNode(48)
    root.right = newNode(3)
  
    root.right.left = newNode(11)
    root.right.right = newNode(37)
  
    root.right.left.left = newNode(7)
    root.right.left.right = newNode(29)
    root.right.right.left = newNode(42)
    root.right.right.right = newNode(19)
    root.right.right.right.left = newNode(7)
  
    # Print Co-Prime Paths
    printCo_PrimePath(root)
 
# This code is contributed by rutvik_56


C#




// C# program for printing Co-prime
// paths of binary Tree
using System;
using System.Collections.Generic;
 
class GFG{
   
// A Tree node
class Node {
    public int key;
    public Node left, right;
};
   
// Utility function to create
// a new node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return (temp);
}
   
static int N = 1000000;
   
// List to store all the
// prime numbers
static List<int> prime = new List<int>();
   
// Function to store all the
// prime numbers in an array
static void SieveOfEratosthenes()
{
    // Create a bool array "prime[0..N]"
    // and initialize all the entries in it
    // as true. A value in prime[i]
    // will finally be false if
    // i is Not a prime, else true.
    bool []check = new bool[N + 1];
    for(int i=0;i<=N;i++)
        check[i] = true;
   
    for (int p = 2; p * p <= N; p++) {
   
        // If prime[p] is not changed,
        // then it is a prime
        if (check[p] == true) {
   
            prime.Add(p);
   
            // Update all multiples of p
            // greater than or equal to
            // the square of it
            // numbers which are multiples of p
            // and are less than p^2
            // are already marked.
            for (int i = p * p; i <= N; i += p)
                check[i] = false;
        }
    }
}
   
// Function to check whether Path
// is Co-prime or not
static bool isPathCo_Prime(List<int> path)
{
   
    int max = 0;
   
    // Iterating through the array
    // to find the maximum element
    // in the array
    foreach (int x in path) {
        if (max < x)
            max = x;
    }
   
    for (int i = 0;
         i * prime[i] <= max / 2;
         i++) {
   
        int ct = 0;
   
        // Incrementing the variable
        // if any of the value has
        // a factor
        foreach (int x in path) {
            if (x % prime[i] == 0)
                ct++;
        }
   
        // If not co-prime
        if (ct > 1) {
            return false;
        }
    }
   
    return true;
}
   
// Function to print a Co-Prime path
static void printCo_PrimePaths(List<int> path)
{
    foreach (int x in path) {
        Console.Write(x+ " ");
    }
   
    Console.WriteLine();
}
   
// Function to find co-prime paths of
// binary tree
static void findCo_PrimePaths(Node root,
                       List<int> path)
{
    // Base case
    if (root == null)
        return;
   
    // Store the value in path vector
    path.Add(root.key);
   
    // Recursively call for left sub tree
    findCo_PrimePaths(root.left, path);
   
    // Recursively call for right sub tree
    findCo_PrimePaths(root.right, path);
   
    // Condition to check, if leaf node
    if (root.left == null
        && root.right == null) {
   
        // Condition to check,
        // if path co-prime or not
        if (isPathCo_Prime(path)) {
   
            // Print co-prime path
            printCo_PrimePaths(path);
        }
    }
   
    // Remove the last element
    // from the path vector
    path.RemoveAt(path.Count-1);
}
   
// Function to find Co-Prime paths
// In a given binary tree
static void printCo_PrimePaths(Node node)
{
    // To save all prime numbers
    SieveOfEratosthenes();
   
    List<int> path = new List<int>();
    // Function call
    findCo_PrimePaths(node, path);
}
   
// Driver Code
public static void Main(String[] args)
{
    /*         10 
            /   \ 
           48    3 
               /   \ 
              11    37 
              / \   / \ 
             7  29 42 19 
                      
                     
    */
   
    // Create Binary Tree as shown
    Node root = newNode(10);
    root.left = newNode(48);
    root.right = newNode(3);
   
    root.right.left = newNode(11);
    root.right.right = newNode(37);
   
    root.right.left.left = newNode(7);
    root.right.left.right = newNode(29);
    root.right.right.left = newNode(42);
    root.right.right.right = newNode(19);
    root.right.right.right.left = newNode(7);
   
    // Print Co-Prime Paths
    printCo_PrimePaths(root);
   
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
    // JavaScript program for printing
    // Co-prime paths of binary Tree
     
    // A Tree node
    class Node {
        constructor(key) {
         this.left = null;
         this.right = null;
         this.key = key;
      }
    }
 
    // Utility function to create
    // a new node
    function newNode(key)
    {
        let temp = new Node(key);
        return (temp);
    }
 
    let N = 1000000;
 
    // Vector to store all the
    // prime numbers
    let prime = [];
 
    // Function to store all the
    // prime numbers in an array
    function SieveOfEratosthenes()
    {
        // Create a boolean array "prime[0..N]"
        // and initialize all the entries in it
        // as true. A value in prime[i]
        // will finally be false if
        // i is Not a prime, else true.
        let check = new Array(N + 1);
        check.fill(true);
 
        for (let p = 2; p * p <= N; p++) {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (check[p] == true) {
 
                prime.push(p);
 
                // Update all multiples of p
                // greater than or equal to
                // the square of it
                // numbers which are multiples of p
                // and are less than p^2
                // are already marked.
                for (let i = p * p; i <= N; i += p)
                    check[i] = false;
            }
        }
    }
 
    // Function to check whether Path
    // is Co-prime or not
    function isPathCo_Prime(path)
    {
 
        let max = 0;
 
        // Iterating through the array
        // to find the maximum element
        // in the array
        for (let x = 0; x < path.length; x++) {
            if (max < path[x])
                max = path[x];
        }
 
        for (let i = 0; i * prime[i] <= parseInt(max / 2, 10); i++)
        {
 
            let ct = 0;
 
            // Incrementing the variable
            // if any of the value has
            // a factor
            for (let x = 0; x < path.length; x++) {
                if (path[x] % prime[i] == 0)
                    ct++;
            }
 
            // If not co-prime
            if (ct > 1) {
                return false;
            }
        }
 
        return true;
    }
 
    // Function to print a Co-Prime path
    function printCoPrimePaths(path)
    {
        for (let x = 0; x < path.length; x++) {
            document.write(path[x]+ " ");
        }
 
        document.write("</br>");
    }
 
    // Function to find co-prime paths of
    // binary tree
    function findCo_PrimePaths(root, path)
    {
        // Base case
        if (root == null)
            return;
 
        // Store the value in path vector
        path.push(root.key);
 
        // Recursively call for left sub tree
        findCo_PrimePaths(root.left, path);
 
        // Recursively call for right sub tree
        findCo_PrimePaths(root.right, path);
 
        // Condition to check, if leaf node
        if (root.left == null
            && root.right == null) {
 
            // Condition to check,
            // if path co-prime or not
            if (isPathCo_Prime(path)) {
 
                // Print co-prime path
                printCoPrimePaths(path);
            }
        }
 
        // Remove the last element
        // from the path vector
        path.pop();
    }
 
    // Function to find Co-Prime paths
    // In a given binary tree
    function printCo_PrimePaths(node)
    {
        // To save all prime numbers
        SieveOfEratosthenes();
 
        let path = [];
        // Function call
        findCo_PrimePaths(node, path);
    }
     
    /*         10
            /   \
           48    3
               /   \
              11    37
              / \   / \
             7  29 42 19
                      /
                     7
    */
   
    // Create Binary Tree as shown
    let root = newNode(10);
    root.left = newNode(48);
    root.right = newNode(3);
   
    root.right.left = newNode(11);
    root.right.right = newNode(37);
   
    root.right.left.left = newNode(7);
    root.right.left.right = newNode(29);
    root.right.right.left = newNode(42);
    root.right.right.right = newNode(19);
    root.right.right.right.left = newNode(7);
   
    // Print Co-Prime Paths
    printCo_PrimePaths(root);
   
</script>


Output: 

10 3 11 7 
10 3 11 29 
10 3 37 19 7

 

Time Complexity: O(n*log(log(n)))

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments