Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIPerfect Sum Problem (Print all subsets with given sum)

Perfect Sum Problem (Print all subsets with given sum)

Given an array of integers and a sum, the task is to print all subsets of the given array with a sum equal to a given sum.

Examples: 

Input : arr[] = {2, 3, 5, 6, 8, 10}
        sum = 10
Output : 5 2 3
         2 8
         10

Input : arr[] = {1, 2, 3, 4, 5}
        sum = 10
Output : 4 3 2 1 
         5 3 2 
         5 4 1 

Asked in Tesco

Recommended Practice

This problem is mainly an extension of Subset Sum Problem. Here we not only need to find if there is a subset with the given sum but also need to print all subsets with a given sum.

Like the previous post, we build a 2D array dp[][] such that dp[i][j] stores true if sum j is possible with array elements from 0 to i. 

After filling dp[][], we recursively traverse it from dp[n-1][sum]. For the cell being traversed, we store the path before reaching it and consider two possibilities for the element. 

  1. Element is included in the current path. 
  2. Element is not included in the current path.

Whenever the sum becomes 0, we stop the recursive calls and print the current path.

Below is an implementation of the above idea.

C++




// C++ program to count all subsets with
// given sum.
#include <bits/stdc++.h>
using namespace std;
 
// dp[i][j] is going to store true if sum j is
// possible with array elements from 0 to i.
bool** dp;
 
void display(const vector<int>& v)
{
    for (int i = 0; i < v.size(); ++i)
        printf("%d ", v[i]);
    printf("\n");
}
 
// A recursive function to print all subsets with the
// help of dp[][]. Vector p[] stores current subset.
void printSubsetsRec(int arr[], int i, int sum, vector<int>& p)
{
    // If we reached end and sum is non-zero. We print
    // p[] only if arr[0] is equal to sum OR dp[0][sum]
    // is true.
    if (i == 0 && sum != 0 && dp[0][sum])
    {
        p.push_back(arr[i]);
        // Display Only when Sum of elements of p is equal to sum
          if (arr[i] == sum)
              display(p);
        return;
    }
 
    // If sum becomes 0
    if (i == 0 && sum == 0)
    {
        display(p);
        return;
    }
 
    // If given sum can be achieved after ignoring
    // current element.
    if (dp[i-1][sum])
    {
        // Create a new vector to store path
        vector<int> b = p;
        printSubsetsRec(arr, i-1, sum, b);
    }
 
    // If given sum can be achieved after considering
    // current element.
    if (sum >= arr[i] && dp[i-1][sum-arr[i]])
    {
        p.push_back(arr[i]);
        printSubsetsRec(arr, i-1, sum-arr[i], p);
    }
}
 
// Prints all subsets of arr[0..n-1] with sum 0.
void printAllSubsets(int arr[], int n, int sum)
{
    if (n == 0 || sum < 0)
       return;
 
    // Sum 0 can always be achieved with 0 elements
    dp = new bool*[n];
    for (int i=0; i<n; ++i)
    {
        dp[i] = new bool[sum + 1];
        dp[i][0] = true;
    }
 
    // Sum arr[0] can be achieved with single element
    if (arr[0] <= sum)
       dp[0][arr[0]] = true;
 
    // Fill rest of the entries in dp[][]
    for (int i = 1; i < n; ++i)
        for (int j = 0; j < sum + 1; ++j)
            dp[i][j] = (arr[i] <= j) ? dp[i-1][j] ||
                                       dp[i-1][j-arr[i]]
                                     : dp[i - 1][j];
    if (dp[n-1][sum] == false)
    {
        printf("There are no subsets with sum %d\n", sum);
        return;
    }
 
    // Now recursively traverse dp[][] to find all
    // paths from dp[n-1][sum]
    vector<int> p;
    printSubsetsRec(arr, n-1, sum, p);
}
 
// Driver code
int main()
{
    int arr[] = {1, 2, 3, 4, 5};
    int n = sizeof(arr)/sizeof(arr[0]);
    int sum = 10;
    printAllSubsets(arr, n, sum);
    return 0;
}


Java




// A Java program to count all subsets with given sum.
import java.util.ArrayList;
public class SubSet_sum_problem
{
    // dp[i][j] is going to store true if sum j is
    // possible with array elements from 0 to i.
    static boolean[][] dp;
      
    static void display(ArrayList<Integer> v)
    {
       System.out.println(v);
    }
      
    // A recursive function to print all subsets with the
    // help of dp[][]. Vector p[] stores current subset.
    static void printSubsetsRec(int arr[], int i, int sum,
                                         ArrayList<Integer> p)
    {
        // If we reached end and sum is non-zero. We print
        // p[] only if arr[0] is equal to sum OR dp[0][sum]
        // is true.
        if (i == 0 && sum != 0 && dp[0][sum])
        {
            p.add(arr[i]);
            display(p);
            p.clear();
            return;
        }
      
        // If sum becomes 0
        if (i == 0 && sum == 0)
        {
            display(p);
            p.clear();
            return;
        }
      
        // If given sum can be achieved after ignoring
        // current element.
        if (dp[i-1][sum])
        {
            // Create a new vector to store path
            ArrayList<Integer> b = new ArrayList<>();
            b.addAll(p);
            printSubsetsRec(arr, i-1, sum, b);
        }
      
        // If given sum can be achieved after considering
        // current element.
        if (sum >= arr[i] && dp[i-1][sum-arr[i]])
        {
            p.add(arr[i]);
            printSubsetsRec(arr, i-1, sum-arr[i], p);
        }
    }
      
    // Prints all subsets of arr[0..n-1] with sum 0.
    static void printAllSubsets(int arr[], int n, int sum)
    {
        if (n == 0 || sum < 0)
           return;
      
        // Sum 0 can always be achieved with 0 elements
        dp = new boolean[n][sum + 1];
        for (int i=0; i<n; ++i)
        {
            dp[i][0] = true
        }
      
        // Sum arr[0] can be achieved with single element
        if (arr[0] <= sum)
           dp[0][arr[0]] = true;
      
        // Fill rest of the entries in dp[][]
        for (int i = 1; i < n; ++i)
            for (int j = 0; j < sum + 1; ++j)
                dp[i][j] = (arr[i] <= j) ? (dp[i-1][j] ||
                                           dp[i-1][j-arr[i]])
                                         : dp[i - 1][j];
        if (dp[n-1][sum] == false)
        {
            System.out.println("There are no subsets with" +
                                                  " sum "+ sum);
            return;
        }
      
        // Now recursively traverse dp[][] to find all
        // paths from dp[n-1][sum]
        ArrayList<Integer> p = new ArrayList<>();
        printSubsetsRec(arr, n-1, sum, p);
    }
     
    //Driver Program to test above functions
    public static void main(String args[])
    {
        int arr[] = {1, 2, 3, 4, 5};
        int n = arr.length;
        int sum = 10;
        printAllSubsets(arr, n, sum);
    }
}
//This code is contributed by Sumit Ghosh


Python3




# A Python program to count all subsets with given sum.
 
# dp[i][j] is going to store True if sum j is
# possible with array elements from 0 to i.
dp = [[]]
 
def display(v):
    print(v)
 
# A recursive function to print all subsets with the
# help of dp[][]. list p[] stores current subset.
def printSubsetsRec(arr, i, sum, p):
   
    # If we reached end and sum is non-zero. We print
    # p[] only if arr[0] is equal to sum OR dp[0][sum]
    # is True.
    if (i == 0 and sum != 0 and dp[0][sum]):
        p.append(arr[i])
        display(p)
        p = []
        return
 
    # If sum becomes 0
    if (i == 0 and sum == 0):
        display(p)
        p = []
        return
 
    # If given sum can be achieved after ignoring
    # current element.
    if (dp[i-1][sum]):
        # Create a new list to store path
        b = []
        b.extend(p)
        printSubsetsRec(arr, i-1, sum, b)
 
    # If given sum can be achieved after considering
    # current element.
    if (sum >= arr[i] and dp[i-1][sum-arr[i]]):
        p.append(arr[i])
        printSubsetsRec(arr, i-1, sum-arr[i], p)
 
# Prints all subsets of arr[0..n-1] with sum 0.
def printAllSubsets(arr, n, sum):
    if (n == 0 or sum < 0):
        return
 
    # Sum 0 can always be achieved with 0 elements
    global dp
    dp = [[False for i in range(sum+1)] for j in range(n)]
 
    for i in range(n):
        dp[i][0] = True
 
    # Sum arr[0] can be achieved with single element
    if (arr[0] <= sum):
        dp[0][arr[0]] = True
 
    # Fill rest of the entries in dp[][]
    for i in range(1, n):
        for j in range(0, sum + 1):
            if (arr[i] <= j):
                dp[i][j] = (dp[i-1][j] or dp[i-1][j-arr[i]])
            else:
                dp[i][j] = dp[i - 1][j]
 
    if (dp[n-1][sum] == False):
        println("There are no subsets with sum ", sum)
        return
 
    # Now recursively traverse dp[][] to find all
    # paths from dp[n-1][sum]
    p = []
    printSubsetsRec(arr, n-1, sum, p)
 
arr = [1, 2, 3, 4, 5]
n = len(arr)
sum = 10
printAllSubsets(arr, n, sum)
 
# This code is contributed by Lovely Jain


C#




// A C# program to count all subsets with given sum.
 
using System;
using System.Collections.Generic;
 
public class SubSet_sum_problem
{
 
  // dp[i][j] is going to store true if sum j is
  // possible with array elements from 0 to i.
  static bool[, ] dp;
 
  static void display(List<int> v)
  {
    foreach(var i in v) Console.Write(i + " ");
    Console.WriteLine();
  }
 
  // A recursive function to print all subsets with the
  // help of dp[][]. Vector p[] stores current subset.
  static void printSubsetsRec(int[] arr, int i, int sum,
                              List<int> p)
  {
    // If we reached end and sum is non-zero. We print
    // p[] only if arr[0] is equal to sum OR dp[0][sum]
    // is true.
    if (i == 0 && sum != 0 && dp[0, sum]) {
      p.Add(arr[i]);
      display(p);
      p.Clear();
      return;
    }
 
    // If sum becomes 0
    if (i == 0 && sum == 0) {
      display(p);
      p.Clear();
      return;
    }
 
    // If given sum can be achieved after ignoring
    // current element.
    if (dp[i - 1, sum]) {
      // Create a new vector to store path
      List<int> b = new List<int>();
      b.AddRange(p);
      printSubsetsRec(arr, i - 1, sum, b);
    }
 
    // If given sum can be achieved after considering
    // current element.
    if (sum >= arr[i] && dp[i - 1, sum - arr[i]]) {
      p.Add(arr[i]);
      printSubsetsRec(arr, i - 1, sum - arr[i], p);
    }
  }
 
  // Prints all subsets of arr[0..n-1] with sum 0.
  static void printAllSubsets(int[] arr, int n, int sum)
  {
    if (n == 0 || sum < 0)
      return;
 
    // Sum 0 can always be achieved with 0 elements
    dp = new bool[n, sum + 1];
    for (int i = 0; i < n; ++i) {
      dp[i, 0] = true;
    }
 
    // Sum arr[0] can be achieved with single element
    if (arr[0] <= sum)
      dp[0, arr[0]] = true;
 
    // Fill rest of the entries in dp[][]
    for (int i = 1; i < n; ++i)
      for (int j = 0; j < sum + 1; ++j)
        dp[i, j] = (arr[i] <= j)
        ? (dp[i - 1, j]
           || dp[i - 1, j - arr[i]])
        : dp[i - 1, j];
    if (dp[n - 1, sum] == false) {
      Console.WriteLine("There are no subsets with"
                        + " sum " + sum);
      return;
    }
 
    // Now recursively traverse dp[][] to find all
    // paths from dp[n-1][sum]
    List<int> p = new List<int>();
    printSubsetsRec(arr, n - 1, sum, p);
  }
 
  // Driver Program to test above functions
  public static void Main(string[] args)
  {
    int[] arr = { 1, 2, 3, 4, 5 };
    int n = arr.Length;
    int sum = 10;
    printAllSubsets(arr, n, sum);
  }
}
 
// This code is contributed by phasing17


Javascript




<script>
//  A Javascript program to count all subsets with given sum.
//  dp[i][j] is going to store True if sum j is
//  possible with array elements from 0 to i.
var dp = [];
 
function display(v){
    document.write(v+"<br>");
}
//  A recursive function to print all subsets with the
//  help of dp[][]. list p[] stores current subset.
function printSubsetsRec(arr, i, sum, p){
   
    //  If we reached end and sum is non-zero. We print
    //  p[] only if arr[0] is equal to sum OR dp[0][sum]
    //  is True.
    if (i === 0 && sum !== 0 && dp[0][sum] !== 0){
        p.push(arr[i]);
        display(p);
        p = [];
        return;
    }
    //  If sum becomes 0
    if (i == 0 && sum == 0){
        display(p);
        p = [];
        return;
    }
    //  If given sum can be achieved after ignoring
    //  current element.
    if (dp[i-1][sum]){
        //  Create a new list to store path
        b = [...p];
        printSubsetsRec(arr, i-1, sum, b);
    }
    //  If given sum can be achieved after considering
    //  current element.
    if (sum >= arr[i] && dp[i-1][sum-arr[i]]){
        p.push(arr[i]);
        printSubsetsRec(arr, i-1, sum-arr[i], p);
    }
}
//  Prints all subsets of arr[0..n-1] with sum 0.
function printAllSubsets(arr, n, sum){
    if (n == 0 || sum < 0)
        return;
 
    //  Sum 0 can always be achieved with 0 elements
    for(let i = 0; i < n; i++){
        dp[i]= [];
        for(let j = 0; j < sum+1; j++)
            dp[i].push(false);
    
     for(let i = 0; i < n; i++)
        dp[i][0] = true;
 
    //  Sum arr[0] can be achieved with single element
    if (arr[0] <= sum)
        dp[0][arr[0]] = true;
 
    //  Fill rest of the entries in dp[][]
     for(var i = 1; i < n; i++){
         for(let j = 0; j < sum+1; j++){
            if (arr[i] <= j)
                dp[i][j] = (dp[i-1][j] || dp[i-1][j-arr[i]]);
            else
                dp[i][j] = dp[i - 1][j];
        }
    }
    if (dp[n-1][sum] == false){
        document.write("There are no subsets with sum "+ sum);
        return;
    }
    //  Now recursively traverse dp[][] to find all
    //  paths from dp[n-1][sum]
    p = [];
    printSubsetsRec(arr, n-1, sum, p);
}
arr = [1, 2, 3, 4, 5];
n = arr.length
sum = 10
printAllSubsets(arr, n, sum);
 
// This code is contributed by repakaeswaripriya.
</script>


Output

4 3 2 1 
5 3 2 
5 4 1 

Another Approach : 

For each element in the array, first decide to take it or not in the subset. Define a function that will take care of all this. The function is called once in the main function. The static class fields are declared which will be operated by our function. At each call, the function checks for the condition of the fields. In our case, it checks if the current sum is equal to the given sum and accordingly increments the respective class field. If not, it makes function calls by taking all the case. So the number of function calls will be equal to the number of cases. So here, two calls are made – one by taking the element in the subset and incrementing the current sum and another by not taking the element.

Below is the implementation :

C++




// C++ code to find the number of possible subset with given sum
#include <bits/stdc++.h>
using namespace std;
 
int n;
int cnt;
int sum;
 
void f(int pat[], int i, int currSum)
{
    if (currSum == sum)
    {
        cnt++;
        return;
    }
 
    if (currSum < sum && i < n)
    {
        f(pat, i + 1, currSum + pat[i]);
        f(pat, i + 1, currSum);
    }
}
 
int main()
{
    cnt = 0;
    n = 5;
    sum = 10;
 
    int pat[] = {2, 3, 5, 6, 8, 10};
    f(pat, 0, 0);
 
    cout << cnt << endl;
    return 0;
}
 
/*This code is contributed by Nikhil Goswami (@nikhil070g) */


Java




// Java code to find the number of
// possible subset with given sum
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG {
     
    static int count;
    static int sum;
    static int n;
     
    // Driver code
    public static void main (String[] args) {
        count = 0;
        n = 5;
        sum = 10;
 
        int[] pat = {2, 3, 5, 6, 8, 10};
         
        f(pat, 0, 0);
         
        System.out.println(count);
    }
     
    // Function to select or not the array element
    // to form a subset with given sum
    static void f(int[] pat, int i, int currSum) {
        if (currSum == sum) {
            count++;
            return;
        }
        if (currSum < sum && i < n) {
            f(pat, i+1, currSum + pat[i]);
            f(pat, i+1, currSum);
        }
    }
}


Python3




# Python code to find the number of
# possible subset with given sum
def f(pat, i, currSum):
    global cnt, n, sum
    if (currSum == sum):
        cnt += 1
        return
    if (currSum < sum and i < n):
        f(pat, i + 1, currSum + pat[i])
        f(pat, i + 1, currSum)
 
# driver code
cnt = 0
n = 5
sum = 10
 
pat = [2, 3, 5, 6, 8, 10]
f(pat, 0, 0)
 
print(cnt)
 
# This code is contributed by shinjanpatra


Javascript




<script>
 
// JavaScript code to find the number of
// possible subset with given sum
let n;
let cnt;
let sum;
 
function f(pat, i, currSum)
{
    if (currSum == sum)
    {
        cnt++;
        return;
    }
 
    if (currSum < sum && i < n)
    {
        f(pat, i + 1, currSum + pat[i]);
        f(pat, i + 1, currSum);
    }
}
 
// driver code
cnt = 0;
n = 5;
sum = 10;
 
let pat = [2, 3, 5, 6, 8, 10];
f(pat, 0, 0);
 
document.write(cnt,"</br>");
 
// This code is contributed by shinjanpatra
 
</script>


C#




// C# code to find the number of
// possible subset with given sum
 
using System;
 
class GFG {
 
    static int count;
    static int sum;
    static int n;
 
    // Driver code
    public static void Main(string[] args)
    {
        count = 0;
        n = 5;
        sum = 10;
 
        int[] pat = { 2, 3, 5, 6, 8, 10 };
 
        f(pat, 0, 0);
 
        Console.WriteLine(count);
    }
 
    // Function to select or not the array element
    // to form a subset with given sum
    static void f(int[] pat, int i, int currSum)
    {
        if (currSum == sum) {
            count++;
            return;
        }
        if (currSum < sum && i < n) {
            f(pat, i + 1, currSum + pat[i]);
            f(pat, i + 1, currSum);
        }
    }
}
 
// This code is contributed by phasing17


Output

2

Time Complexity: O(2n)
Auxiliary Space: O(log(n)) due to the recursion call stack.

This article is contributed by Jas Kaur. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments