Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIPentacontagon number

Pentacontagon number

Given a number N, the task is to find Nth Pentacontagon number
 

A Pentacontagon number is class of figurate number. It has 50 – sided polygon called pentacontagon. The N-th pentacontagon number count’s the 50 number of dots and all others dots are surrounding with a common sharing corner and make a pattern. The first few pentacontagonol numbers are 1, 50, 147, 292 … 
 

Examples: 
 

Input: N = 2 
Output: 50 
Explanation: 
The second pentacontagonol number is 50. 
Input: N = 3 
Output: 147 
 

 

Approach: The N-th pentacontagon number is given by the formula:
 

  • Nth term of s sided polygon = \frac{((s-2)n^2 - (s-4)n)}{2}
     
  • Therefore Nth term of 50 sided polygon is
     

Tn =\frac{((50-2)n^2 - (50-4)n)}{2} =\frac{(48n^2 - 46)}{2}

  •  

Below is the implementation of the above approach: 
 

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Finding the nth pentacontagon Number
int pentacontagonNum(int n)
{
    return (48 * n * n - 46 * n) / 2;
}
 
// Driver Code
int main()
{
    int n = 3;
    cout << "3rd pentacontagon Number is = "
         << pentacontagonNum(n);
 
    return 0;
}
 
// This code is contributed by Akanksha_Rai


C




// C program for above approach
#include <stdio.h>
#include <stdlib.h>
 
// Finding the nth pentacontagon Number
int pentacontagonNum(int n)
{
    return (48 * n * n - 46 * n) / 2;
}
 
// Driver program to test above function
int main()
{
    int n = 3;
    printf("3rd pentacontagon Number is = %d",
           pentacontagonNum(n));
 
    return 0;
}


Java




// Java program for above approach
import java.util.*;
 
class GFG {
 
// Finding the nth pentacontagon number
static int pentacontagonNum(int n)
{
    return (48 * n * n - 46 * n) / 2;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
     
    System.out.println("3rd pentacontagon Number is = " +
                                    pentacontagonNum(n));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for above approach
 
# Finding the nth pentacontagon Number
def pentacontagonNum(n):
 
    return (48 * n * n - 46 * n) // 2
 
# Driver Code
n = 3
print("3rd pentacontagon Number is = ",
                   pentacontagonNum(n))
 
# This code is contributed by divyamohan123


C#




// C# program for above approach
using System;
 
class GFG {
 
// Finding the nth pentacontagon number
static int pentacontagonNum(int n)
{
    return (48 * n * n - 46 * n) / 2;
}
 
// Driver code
public static void Main(string[] args)
{
    int n = 3;
     
    Console.Write("3rd pentacontagon Number is = " +
                               pentacontagonNum(n));
}
}
 
// This code is contributed by rutvik_56   


Javascript




<script>
 
// javascript program for above approach
 
// Finding the nth pentacontagon Number
function pentacontagonNum( n)
{
    return (48 * n * n - 46 * n) / 2;
}
 
// Driver code
let n = 3;
document.write("3rd pentacontagon Number is " + pentacontagonNum(n));
 
// This code contributed by gauravrajput1
 
</script>


Output: 

3rd pentacontagon Number is = 147

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Reference: https://en.wikipedia.org/wiki/Pentacontagon

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
22 Jun, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments