Given two sparse matrices (Sparse Matrix and its representations | Set 1 (Using Arrays and Linked Lists)), perform operations such as add, multiply or transpose of the matrices in their sparse form itself. The result should consist of three sparse matrices, one obtained by adding the two input matrices, one by multiplying the two matrices and one obtained by transpose of the first matrix.
Example: Note that other entries of matrices will be zero as matrices are sparse.
Input : Matrix 1: (4x4) Row Column Value 1 2 10 1 4 12 3 3 5 4 1 15 4 2 12 Matrix 2: (4X4) Row Column Value 1 3 8 2 4 23 3 3 9 4 1 20 4 2 25 Output : Result of Addition: (4x4) Row Column Value 1 2 10 1 3 8 1 4 12 2 4 23 3 3 14 4 1 35 4 2 37 Result of Multiplication: (4x4) Row Column Value 1 1 240 1 2 300 1 4 230 3 3 45 4 3 120 4 4 276 Result of transpose on the first matrix: (4x4) Row Column Value 1 4 15 2 1 10 2 4 12 3 3 5 4 1 12
The sparse matrix used anywhere in the program is sorted according to its row values. Two elements with the same row values are further sorted according to their column values.
Now to Add the matrices, we simply traverse through both matrices element by element and insert the smaller element (one with smaller row and col value) into the resultant matrix. If we come across an element with the same row and column value, we simply add their values and insert the added data into the resultant matrix.
To Transpose a matrix, we can simply change every column value to the row value and vice-versa, however, in this case, the resultant matrix won’t be sorted as we require. Hence, we initially determine the number of elements less than the current element’s column being inserted in order to get the exact index of the resultant matrix where the current element should be placed. This is done by maintaining an array index[] whose ith value indicates the number of elements in the matrix less than the column i.
To Multiply the matrices, we first calculate transpose of the second matrix to simplify our comparisons and maintain the sorted order. So, the resultant matrix is obtained by traversing through the entire length of both matrices and summing the appropriate multiplied values.
Any row value equal to x in the first matrix and row value equal to y in the second matrix (transposed one) will contribute towards result[x][y]. This is obtained by multiplying all such elements having col value in both matrices and adding only those with the row as x in first matrix and row as y in the second transposed matrix to get the result[x][y].
For example: Consider 2 matrices:
Row Col Val Row Col Val 1 2 10 1 1 2 1 3 12 1 2 5 2 1 1 2 2 1 2 3 2 3 1 8
The resulting matrix after multiplication will be obtained as follows:
Transpose of second matrix: Row Col Val Row Col Val 1 2 10 1 1 2 1 3 12 1 3 8 2 1 1 2 1 5 2 3 2 2 2 1 Summation of multiplied values: result[1][1] = A[1][3]*B[1][3] = 12*8 = 96 result[1][2] = A[1][2]*B[2][2] = 10*1 = 10 result[2][1] = A[2][1]*B[1][1] + A[2][3]*B[1][3] = 2*1 + 2*8 = 18 result[2][2] = A[2][1]*B[2][1] = 1*5 = 5 Any other element cannot be obtained by any combination of row in Matrix A and Row in Matrix B. Hence the final resultant matrix will be: Row Col Val 1 1 96 1 2 10 2 1 18 2 2 5
Following is the implementation of above approach:
C++
// C++ code to perform add, multiply // and transpose on sparse matrices #include <iostream> using namespace std; class sparse_matrix { // Maximum number of elements in matrix const static int MAX = 100; // Double-pointer initialized by // the constructor to store // the triple-represented form int **data; // dimensions of matrix int row, col; // total number of elements in matrix int len; public : sparse_matrix( int r, int c) { // initialize row row = r; // initialize col col = c; // initialize length to 0 len = 0; //Array of Pointer to make a matrix data = new int *[MAX]; // Array representation // of sparse matrix //[,0] represents row //[,1] represents col //[,2] represents value for ( int i = 0; i < MAX; i++) data[i] = new int [3]; } // insert elements into sparse matrix void insert( int r, int c, int val) { // invalid entry if (r > row || c > col) { cout << "Wrong entry" ; } else { // insert row value data[len][0] = r; // insert col value data[len][1] = c; // insert element's value data[len][2] = val; // increment number of data in matrix len++; } } void add(sparse_matrix b) { // if matrices don't have same dimensions if (row != b.row || col != b.col) { cout << "Matrices can't be added" ; } else { int apos = 0, bpos = 0; sparse_matrix result(row, col); while (apos < len && bpos < b.len) { // if b's row and col is smaller if (data[apos][0] > b.data[bpos][0] || (data[apos][0] == b.data[bpos][0] && data[apos][1] > b.data[bpos][1])) { // insert smaller value into result result.insert(b.data[bpos][0], b.data[bpos][1], b.data[bpos][2]); bpos++; } // if a's row and col is smaller else if (data[apos][0] < b.data[bpos][0] || (data[apos][0] == b.data[bpos][0] && data[apos][1] < b.data[bpos][1])) { // insert smaller value into result result.insert(data[apos][0], data[apos][1], data[apos][2]); apos++; } else { // add the values as row and col is same int addedval = data[apos][2] + b.data[bpos][2]; if (addedval != 0) result.insert(data[apos][0], data[apos][1], addedval); // then insert apos++; bpos++; } } // insert remaining elements while (apos < len) result.insert(data[apos][0], data[apos][1], data[apos++][2]); while (bpos < b.len) result.insert(b.data[bpos][0], b.data[bpos][1], b.data[bpos++][2]); // print result result.print(); } } sparse_matrix transpose() { // new matrix with inversed row X col sparse_matrix result(col, row); // same number of elements result.len = len; // to count number of elements in each column int *count = new int [col + 1]; // initialize all to 0 for ( int i = 1; i <= col; i++) count[i] = 0; for ( int i = 0; i < len; i++) count[data[i][1]]++; int *index = new int [col + 1]; // to count number of elements having // col smaller than particular i // as there is no col with value < 0 index[0] = 0; // initialize rest of the indices for ( int i = 1; i <= col; i++) index[i] = index[i - 1] + count[i - 1]; for ( int i = 0; i < len; i++) { // insert a data at rpos and // increment its value int rpos = index[data[i][1]]++; // transpose row=col result.data[rpos][0] = data[i][1]; // transpose col=row result.data[rpos][1] = data[i][0]; // same value result.data[rpos][2] = data[i][2]; } // the above method ensures // sorting of transpose matrix // according to row-col value return result; } void multiply(sparse_matrix b) { if (col != b.row) { // Invalid multiplication cout << "Can't multiply, Invalid dimensions" ; return ; } // transpose b to compare row // and col values and to add them at the end b = b.transpose(); int apos, bpos; // result matrix of dimension row X b.col // however b has been transposed, // hence row X b.row sparse_matrix result(row, b.row); // iterate over all elements of A for (apos = 0; apos < len;) { // current row of result matrix int r = data[apos][0]; // iterate over all elements of B for (bpos = 0; bpos < b.len;) { // current column of result matrix // data[,0] used as b is transposed int c = b.data[bpos][0]; // temporary pointers created to add all // multiplied values to obtain current // element of result matrix int tempa = apos; int tempb = bpos; int sum = 0; // iterate over all elements with // same row and col value // to calculate result[r] while (tempa < len && data[tempa][0] == r && tempb < b.len && b.data[tempb][0] == c) { if (data[tempa][1] < b.data[tempb][1]) // skip a tempa++; else if (data[tempa][1] > b.data[tempb][1]) // skip b tempb++; else // same col, so multiply and increment sum += data[tempa++][2] * b.data[tempb++][2]; } // insert sum obtained in result[r] // if its not equal to 0 if (sum != 0) result.insert(r, c, sum); while (bpos < b.len && b.data[bpos][0] == c) // jump to next column bpos++; } while (apos < len && data[apos][0] == r) // jump to next row apos++; } result.print(); } // printing matrix void print() { cout << "\nDimension: " << row << "x" << col; cout << "\nSparse Matrix: \nRow\tColumn\tValue\n" ; for ( int i = 0; i < len; i++) { cout << data[i][0] << "\t " << data[i][1] << "\t " << data[i][2] << endl; } } }; // Driver Code int main() { // create two sparse matrices and insert values sparse_matrix a(4, 4); sparse_matrix b(4, 4); a.insert(1, 2, 10); a.insert(1, 4, 12); a.insert(3, 3, 5); a.insert(4, 1, 15); a.insert(4, 2, 12); b.insert(1, 3, 8); b.insert(2, 4, 23); b.insert(3, 3, 9); b.insert(4, 1, 20); b.insert(4, 2, 25); // Output result cout << "Addition: " ; a.add(b); cout << "\nMultiplication: " ; a.multiply(b); cout << "\nTranspose: " ; sparse_matrix atranspose = a.transpose(); atranspose.print(); } // This code is contributed // by Bharath Vignesh J K |
Java
// Java code to perform add, // multiply and transpose on sparse matrices public class sparse_matrix { // Maximum number of elements in matrix int MAX = 100 ; // Array representation // of sparse matrix //[][0] represents row //[][1] represents col //[][2] represents value int data[][] = new int [MAX][ 3 ]; // dimensions of matrix int row, col; // total number of elements in matrix int len; public sparse_matrix( int r, int c) { // initialize row row = r; // initialize col col = c; // initialize length to 0 len = 0 ; } // insert elements into sparse matrix public void insert( int r, int c, int val) { // invalid entry if (r > row || c > col) { System.out.println( "Wrong entry" ); } else { // insert row value data[len][ 0 ] = r; // insert col value data[len][ 1 ] = c; // insert element's value data[len][ 2 ] = val; // increment number of data in matrix len++; } } public void add(sparse_matrix b) { // if matrices don't have same dimensions if (row != b.row || col != b.col) { System.out.println( "Matrices can't be added" ); } else { int apos = 0 , bpos = 0 ; sparse_matrix result = new sparse_matrix(row, col); while (apos < len && bpos < b.len) { // if b's row and col is smaller if (data[apos][ 0 ] > b.data[bpos][ 0 ] || (data[apos][ 0 ] == b.data[bpos][ 0 ] && data[apos][ 1 ] > b.data[bpos][ 1 ])) { // insert smaller value into result result.insert(b.data[bpos][ 0 ], b.data[bpos][ 1 ], b.data[bpos][ 2 ]); bpos++; } // if a's row and col is smaller else if (data[apos][ 0 ] < b.data[bpos][ 0 ] || (data[apos][ 0 ] == b.data[bpos][ 0 ] && data[apos][ 1 ] < b.data[bpos][ 1 ])) { // insert smaller value into result result.insert(data[apos][ 0 ], data[apos][ 1 ], data[apos][ 2 ]); apos++; } else { // add the values as row and col is same int addedval = data[apos][ 2 ] + b.data[bpos][ 2 ]; if (addedval != 0 ) result.insert(data[apos][ 0 ], data[apos][ 1 ], addedval); // then insert apos++; bpos++; } } // insert remaining elements while (apos < len) result.insert(data[apos][ 0 ], data[apos][ 1 ], data[apos++][ 2 ]); while (bpos < b.len) result.insert(b.data[bpos][ 0 ], b.data[bpos][ 1 ], b.data[bpos++][ 2 ]); // print result result.print(); } } public sparse_matrix transpose() { // new matrix with inversed row X col sparse_matrix result = new sparse_matrix(col, row); // same number of elements result.len = len; // to count number of elements in each column int count[] = new int [col + 1 ]; // initialize all to 0 for ( int i = 1 ; i <= col; i++) count[i] = 0 ; for ( int i = 0 ; i < len; i++) count[data[i][ 1 ]]++; int [] index = new int [col + 1 ]; // to count number of elements having col smaller // than particular i // as there is no col with value < 1 index[ 1 ] = 0 ; // initialize rest of the indices for ( int i = 2 ; i <= col; i++) index[i] = index[i - 1 ] + count[i - 1 ]; for ( int i = 0 ; i < len; i++) { // insert a data at rpos and increment its value int rpos = index[data[i][ 1 ]]++; // transpose row=col result.data[rpos][ 0 ] = data[i][ 1 ]; // transpose col=row result.data[rpos][ 1 ] = data[i][ 0 ]; // same value result.data[rpos][ 2 ] = data[i][ 2 ]; } // the above method ensures // sorting of transpose matrix // according to row-col value return result; } public void multiply(sparse_matrix b) { if (col != b.row) { // Invalid multiplication System.out.println( "Can't multiply, " + "Invalid dimensions" ); return ; } // transpose b to compare row // and col values and to add them at the end b = b.transpose(); int apos, bpos; // result matrix of dimension row X b.col // however b has been transposed, hence row X b.row sparse_matrix result = new sparse_matrix(row, b.row); // iterate over all elements of A for (apos = 0 ; apos < len;) { // current row of result matrix int r = data[apos][ 0 ]; // iterate over all elements of B for (bpos = 0 ; bpos < b.len;) { // current column of result matrix // data[][0] used as b is transposed int c = b.data[bpos][ 0 ]; // temporary pointers created to add all // multiplied values to obtain current // element of result matrix int tempa = apos; int tempb = bpos; int sum = 0 ; // iterate over all elements with // same row and col value // to calculate result[r] while (tempa < len && data[tempa][ 0 ] == r && tempb < b.len && b.data[tempb][ 0 ] == c) { if (data[tempa][ 1 ] < b.data[tempb][ 1 ]) // skip a tempa++; else if (data[tempa][ 1 ] > b.data[tempb][ 1 ]) // skip b tempb++; else // same col, so multiply and increment sum += data[tempa++][ 2 ] * b.data[tempb++][ 2 ]; } // insert sum obtained in result[r] // if its not equal to 0 if (sum != 0 ) result.insert(r, c, sum); while (bpos < b.len && b.data[bpos][ 0 ] == c) // jump to next column bpos++; } while (apos < len && data[apos][ 0 ] == r) // jump to next row apos++; } result.print(); } // printing matrix public void print() { System.out.println( "Dimension: " + row + "x" + col); System.out.println( "Sparse Matrix: \nRow Column Value" ); for ( int i = 0 ; i < len; i++) { System.out.println(data[i][ 0 ] + " " + data[i][ 1 ] + " " + data[i][ 2 ]); } } public static void main(String args[]) { // create two sparse matrices and insert values sparse_matrix a = new sparse_matrix( 4 , 4 ); sparse_matrix b = new sparse_matrix( 4 , 4 ); a.insert( 1 , 2 , 10 ); a.insert( 1 , 4 , 12 ); a.insert( 3 , 3 , 5 ); a.insert( 4 , 1 , 15 ); a.insert( 4 , 2 , 12 ); b.insert( 1 , 3 , 8 ); b.insert( 2 , 4 , 23 ); b.insert( 3 , 3 , 9 ); b.insert( 4 , 1 , 20 ); b.insert( 4 , 2 , 25 ); // Output result System.out.println( "Addition: " ); a.add(b); System.out.println( "\nMultiplication: " ); a.multiply(b); System.out.println( "\nTranspose: " ); sparse_matrix atranspose = a.transpose(); atranspose.print(); } } // This code is contributed by Sudarshan Khasnis |
Python3
# Python3 code to perform add, # multiply and transpose on sparse matrices class sparse_matrix : def __init__( self , r, c): # Maximum number of elements in matrix self . MAX = 100 ; # Array representation # of sparse matrix #[][0] represents row #[][1] represents col #[][2] represents value self .data = [ None for _ in range ( self . MAX )] for i in range ( self . MAX ): self .data[i] = [ None for _ in range ( 3 )] # dimensions of matrix self .row = r; self .col = c; # total number of elements in matrix self . len = 0 ; # insert elements into sparse matrix def insert( self , r, c, val): # invalid entry if (r > self .row or c > self .col) : print ( "Wrong entry" ); else : # insert row value self .data[ self . len ][ 0 ] = r; # insert col value self .data[ self . len ][ 1 ] = c; # insert element's value self .data[ self . len ][ 2 ] = val; # increment number of data in matrix self . len + = 1 ; def add( self , b): # if matrices don't have same dimensions if ( self .row ! = b.row or self .col ! = b.col) : print ( "Matrices can't be added" ); else : apos = 0 ; bpos = 0 ; result = sparse_matrix( self .row, self .col); while (apos < self . len and bpos < b. len ): # if b's row and col is smaller if ( self .data[apos][ 0 ] > b.data[bpos][ 0 ] or ( self .data[apos][ 0 ] = = b.data[bpos][ 0 ] and self .data[apos][ 1 ] > b.data[bpos][ 1 ])): # insert smaller value into result result.insert(b.data[bpos][ 0 ], b.data[bpos][ 1 ], b.data[bpos][ 2 ]); bpos + = 1 # if a's row and col is smaller elif ( self .data[apos][ 0 ] < b.data[bpos][ 0 ] or ( self .data[apos][ 0 ] = = b.data[bpos][ 0 ] and self .data[apos][ 1 ] < b.data[bpos][ 1 ])): # insert smaller value into result result.insert( self .data[apos][ 0 ], self .data[apos][ 1 ], self .data[apos][ 2 ]); apos + = 1 ; else : # add the values as row and col is same addedval = self .data[apos][ 2 ] + b.data[bpos][ 2 ]; if (addedval ! = 0 ): result.insert( self .data[apos][ 0 ], self .data[apos][ 1 ], addedval); # then insert apos + = 1 ; bpos + = 1 ; # insert remaining elements while (apos < self . len ): result.insert( self .data[apos][ 0 ], self .data[apos][ 1 ], self .data[apos][ 2 ]); apos + = 1 while (bpos < b. len ): result.insert(b.data[bpos][ 0 ], b.data[bpos][ 1 ], b.data[bpos][ 2 ]); bpos + = 1 # print result result. print (); def transpose( self ): # new matrix with inversed row X col result = sparse_matrix( self .col, self .row); # same number of elements result. len = self . len ; # to count number of elements in each column count = [ None for _ in range ( self .col + 1 )]; # initialize all to 0 for i in range ( 1 , 1 + self .col): count[i] = 0 ; for i in range ( 0 , self . len ): count[ self .data[i][ 1 ]] + = 1 index = [ None for _ in range ( self .col + 1 )] # to count number of elements having col smaller # than particular i # as there is no col with value < 1 index[ 1 ] = 0 ; # initialize rest of the indices for i in range ( 2 , 1 + self .col): index[i] = index[i - 1 ] + count[i - 1 ]; for i in range ( self . len ): # insert a data at rpos and increment its value rpos = index[ self .data[i][ 1 ]] index[ self .data[i][ 1 ]] + = 1 # transpose row=col result.data[rpos][ 0 ] = self .data[i][ 1 ]; # transpose col=row result.data[rpos][ 1 ] = self .data[i][ 0 ]; # same value result.data[rpos][ 2 ] = self .data[i][ 2 ]; # the above method ensures # sorting of transpose matrix # according to row-col value return result; def multiply( self , b): if ( self .col ! = b.row): # Invalid multiplication print ( "Can't multiply, Invalid dimensions" ); return ; # transpose b to compare row # and col values and to add them at the end b = b.transpose(); # result matrix of dimension row X b.col # however b has been transposed, hence row X b.row result = sparse_matrix( self .row, b.row); # iterate over all elements of A for apos in range ( self . len ): # current row of result matrix r = self .data[apos][ 0 ]; # iterate over all elements of B for bpos in range (b. len ): # current column of result matrix # data[][0] used as b is transposed c = b.data[bpos][ 0 ]; # temporary pointers created to add all # multiplied values to obtain current # element of result matrix tempa = apos; tempb = bpos; sum = 0 ; # iterate over all elements with # same row and col value # to calculate result[r] while (tempa < self . len and self .data[tempa][ 0 ] = = r and tempb < b. len and b.data[tempb][ 0 ] = = c): if ( self .data[tempa][ 1 ] < b.data[tempb][ 1 ]): # skip a tempa + = 1 elif ( self .data[tempa][ 1 ] > b.data[tempb][ 1 ]): # skip b tempb + = 1 else : # same col, so multiply and # increment sum + = self .data[tempa][ 2 ] * b.data[tempb][ 2 ]; tempa + = 1 tempb + = 1 # insert sum obtained in result[r] # if its not equal to 0 if ( sum ! = 0 ): result.insert(r, c, sum ); while (bpos < b. len and b.data[bpos][ 0 ] = = c): # jump to next column bpos + = 1 while (apos < self . len and self .data[apos][ 0 ] = = r): # jump to next row apos + = 1 result. print (); # printing matrix def print ( self ): print ( "Dimension:" , self .row, "x" , self .col); print ( "Sparse Matrix: \nRow Column Value" ); for i in range ( self . len ): print ( self .data[i][ 0 ], self .data[i][ 1 ], self .data[i][ 2 ]); # create two sparse matrices and insert values a = sparse_matrix( 4 , 4 ); b = sparse_matrix( 4 , 4 ); a.insert( 1 , 2 , 10 ); a.insert( 1 , 4 , 12 ); a.insert( 3 , 3 , 5 ); a.insert( 4 , 1 , 15 ); a.insert( 4 , 2 , 12 ); b.insert( 1 , 3 , 8 ); b.insert( 2 , 4 , 23 ); b.insert( 3 , 3 , 9 ); b.insert( 4 , 1 , 20 ); b.insert( 4 , 2 , 25 ); # Output result print ( "Addition: " ); a.add(b); print ( "\nMultiplication: " ); a.multiply(b); print ( "\nTranspose: " ); atranspose = a.transpose(); atranspose. print (); # This code is contributed by phasing17 |
C#
// C# code to perform add, // multiply and transpose on sparse matrices public class sparse_matrix { // Maximum number of elements in matrix static int MAX = 100; // Array representation // of sparse matrix //[,0] represents row //[,1] represents col //[,2] represents value int [,] data = new int [MAX,3]; // dimensions of matrix int row, col; // total number of elements in matrix int len; public sparse_matrix( int r, int c) { // initialize row row = r; // initialize col col = c; // initialize length to 0 len = 0; } // insert elements into sparse matrix public void insert( int r, int c, int val) { // invalid entry if (r > row || c > col) { System.Console.WriteLine( "Wrong entry" ); } else { // insert row value data[len,0] = r; // insert col value data[len,1] = c; // insert element's value data[len,2] = val; // increment number of data in matrix len++; } } public void add(sparse_matrix b) { // if matrices don't have same dimensions if (row != b.row || col != b.col) { System.Console.WriteLine( "Matrices can't be added" ); } else { int apos = 0, bpos = 0; sparse_matrix result = new sparse_matrix(row, col); while (apos < len && bpos < b.len) { // if b's row and col is smaller if (data[apos,0] > b.data[bpos,0] || (data[apos,0] == b.data[bpos,0] && data[apos,1] > b.data[bpos,1])) { // insert smaller value into result result.insert(b.data[bpos,0], b.data[bpos,1], b.data[bpos,2]); bpos++; } // if a's row and col is smaller else if (data[apos,0] < b.data[bpos,0] || (data[apos,0] == b.data[bpos,0] && data[apos,1] < b.data[bpos,1])) { // insert smaller value into result result.insert(data[apos,0], data[apos,1], data[apos,2]); apos++; } else { // add the values as row and col is same int addedval = data[apos,2] + b.data[bpos,2]; if (addedval != 0) result.insert(data[apos,0], data[apos,1], addedval); // then insert apos++; bpos++; } } // insert remaining elements while (apos < len) result.insert(data[apos,0], data[apos,1], data[apos++,2]); while (bpos < b.len) result.insert(b.data[bpos,0], b.data[bpos,1], b.data[bpos++,2]); // print result result.print(); } } public sparse_matrix transpose() { // new matrix with inversed row X col sparse_matrix result = new sparse_matrix(col, row); // same number of elements result.len = len; // to count number of elements in each column int [] count = new int [col + 1]; // initialize all to 0 for ( int i = 1; i <= col; i++) count[i] = 0; for ( int i = 0; i < len; i++) count[data[i,1]]++; int [] index = new int [col + 1]; // to count number of elements having col smaller // than particular i // as there is no col with value < 1 index[1] = 0; // initialize rest of the indices for ( int i = 2; i <= col; i++) index[i] = index[i - 1] + count[i - 1]; for ( int i = 0; i < len; i++) { // insert a data at rpos and increment its value int rpos = index[data[i,1]]++; // transpose row=col result.data[rpos,0] = data[i,1]; // transpose col=row result.data[rpos,1] = data[i,0]; // same value result.data[rpos,2] = data[i,2]; } // the above method ensures // sorting of transpose matrix // according to row-col value return result; } public void multiply(sparse_matrix b) { if (col != b.row) { // Invalid multiplication System.Console.WriteLine( "Can't multiply, " + "Invalid dimensions" ); return ; } // transpose b to compare row // and col values and to add them at the end b = b.transpose(); int apos, bpos; // result matrix of dimension row X b.col // however b has been transposed, hence row X b.row sparse_matrix result = new sparse_matrix(row, b.row); // iterate over all elements of A for (apos = 0; apos < len;) { // current row of result matrix int r = data[apos,0]; // iterate over all elements of B for (bpos = 0; bpos < b.len;) { // current column of result matrix // data[,0] used as b is transposed int c = b.data[bpos,0]; // temporary pointers created to add all // multiplied values to obtain current // element of result matrix int tempa = apos; int tempb = bpos; int sum = 0; // iterate over all elements with // same row and col value // to calculate result[r] while (tempa < len && data[tempa,0] == r && tempb < b.len && b.data[tempb,0] == c) { if (data[tempa,1] < b.data[tempb,1]) // skip a tempa++; else if (data[tempa,1] > b.data[tempb,1]) // skip b tempb++; else // same col, so multiply and increment sum += data[tempa++,2] * b.data[tempb++,2]; } // insert sum obtained in result[r] // if its not equal to 0 if (sum != 0) result.insert(r, c, sum); while (bpos < b.len && b.data[bpos,0] == c) // jump to next column bpos++; } while (apos < len && data[apos,0] == r) // jump to next row apos++; } result.print(); } // printing matrix public void print() { System.Console.WriteLine( "Dimension: " + row + "x" + col); System.Console.WriteLine( "Sparse Matrix: \nRow Column Value" ); for ( int i = 0; i < len; i++) { System.Console.WriteLine(data[i,0] + " " + data[i,1] + " " + data[i,2]); } } public static void Main() { // create two sparse matrices and insert values sparse_matrix a = new sparse_matrix(4, 4); sparse_matrix b = new sparse_matrix(4, 4); a.insert(1, 2, 10); a.insert(1, 4, 12); a.insert(3, 3, 5); a.insert(4, 1, 15); a.insert(4, 2, 12); b.insert(1, 3, 8); b.insert(2, 4, 23); b.insert(3, 3, 9); b.insert(4, 1, 20); b.insert(4, 2, 25); // Output result System.Console.WriteLine( "Addition: " ); a.add(b); System.Console.WriteLine( "\nMultiplication: " ); a.multiply(b); System.Console.WriteLine( "\nTranspose: " ); sparse_matrix atranspose = a.transpose(); atranspose.print(); } } // This code is contributed by mits |
Javascript
// JavaScript code to perform add, // multiply and transpose on sparse matrices class sparse_matrix { constructor(r, c) { // Maximum number of elements in matrix this .MAX = 100; // Array representation // of sparse matrix //[][0] represents row //[][1] represents col //[][2] represents value this .data = new Array( this .MAX); for ( var i = 0; i < this .MAX; i++) this .data[i] = new Array(3); // dimensions of matrix this .row = r; this .col = c; // total number of elements in matrix this .len = 0; } // insert elements into sparse matrix insert(r, c, val) { // invalid entry if (r > this .row || c > this .col) { console.log( "Wrong entry" ); } else { // insert row value this .data[ this .len][0] = r; // insert col value this .data[ this .len][1] = c; // insert element's value this .data[ this .len][2] = val; // increment number of data in matrix this .len++; } } add(b) { // if matrices don't have same dimensions if ( this .row != b.row || this .col != b.col) { console.log( "Matrices can't be added" ); } else { let apos = 0, bpos = 0; let result = new sparse_matrix( this .row, this .col); while (apos < this .len && bpos < b.len) { // if b's row and col is smaller if ( this .data[apos][0] > b.data[bpos][0] || ( this .data[apos][0] == b.data[bpos][0] && this .data[apos][1] > b.data[bpos][1])) { // insert smaller value into result result.insert(b.data[bpos][0], b.data[bpos][1], b.data[bpos][2]); bpos++; } // if a's row and col is smaller else if ( this .data[apos][0] < b.data[bpos][0] || ( this .data[apos][0] == b.data[bpos][0] && this .data[apos][1] < b.data[bpos][1])) { // insert smaller value into result result.insert( this .data[apos][0], this .data[apos][1], this .data[apos][2]); apos++; } else { // add the values as row and col is same let addedval = this .data[apos][2] + b.data[bpos][2]; if (addedval != 0) result.insert( this .data[apos][0], this .data[apos][1], addedval); // then insert apos++; bpos++; } } // insert remaining elements while (apos < this .len) result.insert( this .data[apos][0], this .data[apos][1], this .data[apos++][2]); while (bpos < b.len) result.insert(b.data[bpos][0], b.data[bpos][1], b.data[bpos++][2]); // print result result.print(); } } transpose() { // new matrix with inversed row X col let result = new sparse_matrix( this .col, this .row); // same number of elements result.len = this .len; // to count number of elements in each column let count = new Array( this .col + 1); // initialize all to 0 for ( var i = 1; i <= this .col; i++) count[i] = 0; for ( var i = 0; i < this .len; i++) count[ this .data[i][1]]++; let index = new Array( this .col + 1); // to count number of elements having col smaller // than particular i // as there is no col with value < 1 index[1] = 0; // initialize rest of the indices for ( var i = 2; i <= this .col; i++) index[i] = index[i - 1] + count[i - 1]; for ( var i = 0; i < this .len; i++) { // insert a data at rpos and increment its value var rpos = index[ this .data[i][1]]++; // transpose row=col result.data[rpos][0] = this .data[i][1]; // transpose col=row result.data[rpos][1] = this .data[i][0]; // same value result.data[rpos][2] = this .data[i][2]; } // the above method ensures // sorting of transpose matrix // according to row-col value return result; } multiply(b) { if ( this .col != b.row) { // Invalid multiplication console.log( "Can't multiply, " + "Invalid dimensions" ); return ; } // transpose b to compare row // and col values and to add them at the end b = b.transpose(); let apos, bpos; // result matrix of dimension row X b.col // however b has been transposed, hence row X b.row let result = new sparse_matrix( this .row, b.row); // iterate over all elements of A for (apos = 0; apos < this .len;) { // current row of result matrix let r = this .data[apos][0]; // iterate over all elements of B for (bpos = 0; bpos < b.len;) { // current column of result matrix // data[][0] used as b is transposed let c = b.data[bpos][0]; // temporary pointers created to add all // multiplied values to obtain current // element of result matrix let tempa = apos; let tempb = bpos; let sum = 0; // iterate over all elements with // same row and col value // to calculate result[r] while (tempa < this .len && this .data[tempa][0] == r && tempb < b.len && b.data[tempb][0] == c) { if ( this .data[tempa][1] < b.data[tempb][1]) // skip a tempa++; else if ( this .data[tempa][1] > b.data[tempb][1]) // skip b tempb++; else // same col, so multiply and // increment sum += this .data[tempa++][2] * b.data[tempb++][2]; } // insert sum obtained in result[r] // if its not equal to 0 if (sum != 0) result.insert(r, c, sum); while (bpos < b.len && b.data[bpos][0] == c) // jump to next column bpos++; } while (apos < this .len && this .data[apos][0] == r) // jump to next row apos++; } result.print(); } // printing matrix print() { console.log( "Dimension: " + this .row + "x" + this .col); console.log( "Sparse Matrix: \nRow Column Value" ); for ( var i = 0; i < this .len; i++) { console.log( this .data[i][0] + " " + this .data[i][1] + " " + this .data[i][2]); } } }; // create two sparse matrices and insert values let a = new sparse_matrix(4, 4); let b = new sparse_matrix(4, 4); a.insert(1, 2, 10); a.insert(1, 4, 12); a.insert(3, 3, 5); a.insert(4, 1, 15); a.insert(4, 2, 12); b.insert(1, 3, 8); b.insert(2, 4, 23); b.insert(3, 3, 9); b.insert(4, 1, 20); b.insert(4, 2, 25); // Output result console.log( "Addition: " ); a.add(b); console.log( "\nMultiplication: " ); a.multiply(b); console.log( "\nTranspose: " ); let atranspose = a.transpose(); atranspose.print(); // This code is contributed by phasing17 |
Addition: Dimension: 4x4 Sparse Matrix: Row Column Value 1 2 10 1 3 8 1 4 12 2 4 23 3 3 14 4 1 35 4 2 37 Multiplication: Dimension: 4x4 Sparse Matrix: Row Column Value 1 1 240 1 2 300 1 4 230 3 3 45 4 3 120 4 4 276 Transpose: Dimension: 4x4 Sparse Matrix: Row Column Value 1 4 15 2 1 10 2 4 12 3 3 5 4 1 12
Worst case time complexity: Addition operation traverses the matrices linearly, hence, has a time complexity of O(n), where n is the number of non-zero elements in the larger matrix amongst the two. Transpose has a time complexity of O(n+m), where n is the number of columns and m is the number of non-zero elements in the matrix. Multiplication, however, has a time complexity of O(x*n + y*m), where (x, m) is number of columns and terms in the second matrix; and (y, n) is number of rows and terms in the first matrix.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!