Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIMinimum replacements required to make sum of all K-length subarrays equal

Minimum replacements required to make sum of all K-length subarrays equal

Given an array arr[] consisting of N positive integers and an integer K, the task is to make the sum of all K-length subarrays equal by replacing minimum number of array elements with any integer.

Examples:

Input: arr[] = {3, 4, 3, 5, 6}, K = 2
Output: 2
Explanation: 
Operation 1: Replacing arr[3] by 4 modifies arr[] to {3, 4, 3, 4, 6}.
Operation 2: Replacing arr[4] by 3 modifies arr[] to {3, 4, 3, 4, 3}.
All subarrays of length 2 are {{3, 4}, {4, 3}, {3, 4}, {4, 3}}. Sum of all these subarrays is 7. Therefore, the minimum number of operations required is 2.

Input: arr[] = {1, 2, 3, 1, 2}, K = 3
Output: 0
Explanation: All subarrays of length 3 are {{1, 2, 3}, {2, 3, 1}, {3, 1, 2}}. Since all these subarrays have sum 6, the number of operations required is 0.

Approach: The idea is based on the observation that all subarrays will have equal sum, when all elements separated by distance K are equal.

Therefore, the problem can be solved by counting the frequency of elements separated by a distance K and find the number which appears maximum times. Follow the steps below to solve the problem:

  • Initialize a variable ans to store the required result.
  • Iterate in the range [0, K-1] using the variable i
    • Create a map, freq to store the frequency of elements separated by a distance K starting from i.
    • Traverse the map and find the element which occurs the maximum number of times.
    • Again, traverse the map and if the element is not equal to the maximum occurring element then add its frequency to the ans.
  • Print the value of ans as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum number of
// operations required to make sum of
// all subarrays of size K equal
void findMinOperations(int arr[],
                       int N, int K)
{
    // Stores number of operations
    int operations = 0;
 
    // Iterate in the range [0, K-1]
    for (int i = 0; i < K; i++) {
 
        // Stores frequency of elements
        // separated by distance K
        unordered_map<int, int> freq;
 
        for (int j = i; j < N; j += K)
            freq[arr[j]]++;
 
        // Stores maximum frequency
        // and corresponding element
        int max1 = 0, num;
 
        // Find max frequency element
        // and its frequency
        for (auto x : freq) {
            if (x.second > max1) {
                max1 = x.second;
                num = x.first;
            }
        }
 
        // Update the number of operations
        for (auto x : freq) {
            if (x.first != num)
                operations += x.second;
        }
    }
 
    // Print the result
    cout << operations;
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 3, 4, 3, 5, 6 };
    int K = 2;
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    findMinOperations(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.lang.*;
import java.util.*;
 
class GFG
{
   
  // Function to find minimum number of
  // operations required to make sum of
  // all subarrays of size K equal
  static void findMinOperations(int arr[],
                                int N, int K)
  {
 
    // Stores number of operations
    int operations = 0;
 
    // Iterate in the range [0, K-1]
    for (int i = 0; i < K; i++) {
 
      // Stores frequency of elements
      // separated by distance K
      Map<Integer, Integer> freq=new HashMap<>();
 
      for (int j = i; j < N; j += K)
        freq.put(arr[j], freq.getOrDefault(arr[j],0)+1);
 
      // Stores maximum frequency
      // and corresponding element
      int max1 = 0, num=-1;
 
      // Find max frequency element
      // and its frequency
      for (Map.Entry<Integer,Integer> x : freq.entrySet()) {
        if (x.getValue() > max1) {
          max1 = x.getValue();
          num = x.getKey();
        }
      }
 
      // Update the number of operations
      for ( Map.Entry<Integer,Integer> x : freq.entrySet()) {
        if (x.getKey() != num)
          operations += x.getValue();
      }
    }
 
    // Print the result
    System.out.print(operations);
  }
 
  // Driver code
  public static void main(String[] args)
  {
 
    // Given Input
    int arr[] = { 3, 4, 3, 5, 6 };
    int K = 2;
    int N = arr.length;
 
    // Function Call
    findMinOperations(arr, N, K);
  }
 
}
 
// This code is contributed by offbeat


Python3




# python 3 program for the above approach
 
# Function to find minimum number of
# operations required to make sum of
# all subarrays of size K equal
def findMinOperations(arr, N, K):
    # Stores number of operations
    operations = 0
 
    # Iterate in the range [0, K-1]
    for i in range(K):
        # Stores frequency of elements
        # separated by distance K
        freq = {}
 
        for j in range(i,N,K):
            if arr[j] in freq:
                freq[arr[j]] += 1
            else:
                freq[arr[j]] = 1
 
        # Stores maximum frequency
        # and corresponding element
        max1 = 0
        num = 0
 
        # Find max frequency element
        # and its frequency
        for key,value in freq.items():
            if (value > max1):
                max1 = value
                num = key
 
        # Update the number of operations
        for key,value in freq.items():
            if (key != num):
                operations += value
 
    # Print the result
    print(operations)
 
# Driver Code
if __name__ == '__main__':
   
    # Given Input
    arr = [3, 4, 3, 5, 6]
    K = 2
    N = len(arr)
 
    # Function Call
    findMinOperations(arr, N, K)
     
    # This code is contributed by ipg2016107.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
  
// Function to find minimum number of
// operations required to make sum of
// all subarrays of size K equal
static void findMinOperations(int []arr,
                              int N, int K)
{
     
    // Stores number of operations
    int operations = -1;
 
    // Iterate in the range [0, K-1]
    for(int i = 0; i < K; i++)
    {
         
        // Stores frequency of elements
        // separated by distance K
        Dictionary<int,
                   int> freq = new Dictionary<int,
                                              int>();
                                               
        for(int j = i; j < N; j += K)
        {
            if (freq.ContainsKey(arr[j]))
                freq[arr[j]]++;
            else
                freq.Add(arr[j], 1);
        }
 
        // Stores maximum frequency
        // and corresponding element
        int max1 = -1, num = 0;
 
        // Find max frequency element
        // and its frequency
        foreach(KeyValuePair<int, int> entry in freq)
        {
            if (entry.Key > max1)
            {
                max1 = entry.Value;
                num = entry.Key;
            }
        }
     
        // Update the number of operations
        foreach(KeyValuePair<int, int> entry in freq)
        {
            if (entry.Key != num)
                operations += entry.Value;
        }
    }
 
    // Print the result
    Console.Write(operations);
}
 
// Driver Code
public static void Main()
{
     
    // Given Input
    int []arr = { 3, 4, 3, 5, 6 };
    int K = 2;
    int N = arr.Length;
 
    // Function Call
    findMinOperations(arr, N, K);
}
}
 
// This code is contributed by SURENDRA_GANGWAR


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find minimum number of
// operations required to make sum of
// all subarrays of size K equal
function findMinOperations(arr, N, K)
{
    // Stores number of operations
    var operations = 0;
     
    var i,j;
    // Iterate in the range [0, K-1]
    for (i = 0; i < K; i++) {
 
        // Stores frequency of elements
        // separated by distance K
        var freq = new Map();
 
        for(j = i; j < N; j += K){
            if(freq.has(arr[j]))
             freq.set(arr[j], freq.get(arr[j])+1);
            else
             freq.set(arr[j],1);
        }
 
        // Stores maximum frequency
        // and corresponding element
        var max1 = 0, num;
 
        // Find max frequency element
        // and its frequency
 
        for (const [key, value] of freq.entries()) {
          if (value > max1) {
                max1 = value;
                num = key;
            }
        }
 
        // Update the number of operations
       for (const [key, value] of freq.entries()) {
            if (key != num)
                operations += value;
        }
    }
 
    // Print the result
    document.write(operations);
}
 
// Driver Code
 
    // Given Input
    var arr = [3, 4, 3, 5, 6];
    var K = 2;
    var N = arr.length;
 
    // Function Call
    findMinOperations(arr, N, K);
 
</script>


Output: 

2

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments