Friday, January 3, 2025
Google search engine
HomeData Modelling & AIMinimum replacements required to make given Matrix palindromic

Minimum replacements required to make given Matrix palindromic

Given a matrix with N rows and M columns, the task is to find the minimum replacements required to make all rows and columns of a given matrix palindromic.

Examples:

Input: a[][] = {{1, 2, 3}, {4, 5, 3}, {1, 2, 1}}
Output: 2
Explanation: To make the given matrix palindromic, replace a[0][2] by 1 and replace a[1][2] by 4.

Input: a[][] = {{1, 2, 4}, {4, 5, 6}}
Output: 3
Explanation: To make a given matrix palindromic, replace a[0][0] by 4, a[1][2] by 4 and a[[0][1] by 5.

Approach: The idea is to select the set of four cells of the matrix as discussed below and proceed accordingly. 

  1. To make each row and each column of the matrix palindromic, traverse over the given matrix, and for every cell (i, j) (i = [0, N/2], j = [0, M/2]), select a set of the following four cells: 
     
  2. Make the value of all these four cells equal to the most frequent value among the four of them. Count the replacements thus required.
  3. After completing the above steps, print the count of replacements performed.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to count minimum
// changes to make the matrix
// palindromic
int minchanges(vector<vector<int> > mat)
{
    // Rows in the matrix
    int N = mat.size();
  
    // Columns in the matrix
    int M = mat[0].size();
  
    int i, j, ans = 0, x;
    map<int, int> mp;
  
    // Traverse the given matrix
    for (i = 0; i < N / 2; i++) {
        for (j = 0; j < M / 2; j++) {
  
            // Store the frequency of
            // the four cells
            mp[(mat[i][M - 1 - j])]++;
            mp[(mat[i][j])]++;
            mp[(mat[N - 1 - i][M - 1 - j])]++;
            mp[(mat[N - 1 - i][j])]++;
  
            x = 0;
  
            // Iterate over the map
            for (auto it = mp.begin();
                 it != mp.end(); it++) {
                x = max(x, it->second);
            }
  
            // Min changes to do to make all
            ans = ans + 4 - x;
  
            // Four elements equal
            mp.clear();
        }
    }
  
    // Make the middle row palindromic
    if (N % 2 == 1) {
        for (i = 0; i < M / 2; i++) {
            if (mat[N / 2][i]
                != mat[N / 2][M - 1 - i])
                ans++;
        }
    }
  
    if (M % 2 == 1) {
        for (i = 0; i < N / 2; i++) {
  
            // Make the middle column
            // palindromic
            if (mat[i][M / 2]
                != mat[N - 1 - i][M / 2])
                ans++;
        }
    }
  
    // Print minimum changes
    cout << ans;
}
  
// Driver Code
int main()
{
  
    // Given matrix
    vector<vector<int> > mat{ { 1, 2, 3 },
                              { 4, 5, 3 },
                              { 1, 2, 1 } };
  
    // Function Call
    minchanges(mat);
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
  
// Function to count minimum
// changes to make the matrix
// palindromic
static void minchanges(int [][]mat)
{
    
    // Rows in the matrix
    int N = mat.length;
  
    // Columns in the matrix
    int M = mat[0].length;
  
    int i, j, ans = 0, x;
    HashMap<Integer,Integer> mp = new HashMap<Integer,Integer>();
  
    // Traverse the given matrix
    for (i = 0; i < N / 2; i++) 
    {
        for (j = 0; j < M / 2; j++)
        {
  
            // Store the frequency of
            // the four cells            
            if(mp.containsKey(mat[i][M - 1 - j]))
            {
                mp.put(mat[i][M - 1 - j], 
                       mp.get(mat[i][M - 1 - j]) + 1);
            }
            else
            {
                mp.put(mat[i][M - 1 - j], 1);
            }
            if(mp.containsKey(mat[i][j]))
            {
                mp.put(mat[i][j], mp.get(mat[i][j]) + 1);
            }
            else
            {
                mp.put(mat[i][j], 1);
            }
              
            if(mp.containsKey(mat[N - 1 - i][M - 1 - j]))
            {
                mp.put(mat[N - 1 - i][M - 1 - j], 
                       mp.get(mat[N - 1 - i][M - 1 - j]) + 1);
            }
            else
            {
                mp.put(mat[N - 1 - i][M - 1 - j], 1);
            }
            if(mp.containsKey(mat[N - 1 - i][j]))
            {
                mp.put(mat[N - 1 - i][j], 
                       mp.get(mat[N - 1 - i][j])+1);
            }
            else
            {
                mp.put(mat[N - 1 - i][j], 1);
            }
            x = 0;
  
            // Iterate over the map
            for (Map.Entry<Integer,Integer> it : mp.entrySet())
            {
                x = Math.max(x, it.getValue());
            }
  
            // Min changes to do to make all
            ans = ans + 4 - x;
  
            // Four elements equal
            mp.clear();
        }
    }
  
    // Make the middle row palindromic
    if (N % 2 == 1
    {
        for (i = 0; i < M / 2; i++)
        {
            if (mat[N / 2][i]
                != mat[N / 2][M - 1 - i])
                ans++;
        }
    }
  
    if (M % 2 == 1
    {
        for (i = 0; i < N / 2; i++) 
        {
  
            // Make the middle column
            // palindromic
            if (mat[i][M / 2]
                != mat[N - 1 - i][M / 2])
                ans++;
        }
    }
  
    // Print minimum changes
    System.out.print(ans);
}
  
// Driver Code
public static void main(String[] args)
{
  
    // Given matrix
    int [][]mat = { { 1, 2, 3 },
                              { 4, 5, 3 },
                              { 1, 2, 1 } };
  
    // Function Call
    minchanges(mat);
}
}
  
// This code is contributed by shikhasingrajput


Python




# Python program for the above approach
   
# Function to count minimum
# changes to make the matrix
# palindromic
def minchanges(mat) :
      
    # Rows in the matrix
    N = len(mat)
   
    # Columns in the matrix
    M = len(mat[0])
   
    ans = 0
    mp = {}
   
    # Traverse the given matrix
    for i in range(N//2):
        for j in range(M//2):
   
            # Store the frequency of
            # the four cells
            mp[(mat[i][M - 1 - j])] = mp.get(mat[i][M - 1 - j], 0) + 1
            mp[(mat[i][j])] = mp.get(mat[i][j], 0) + 1
            mp[(mat[N - 1 - i][M - 1 - j])] = mp.get(mat[N - 1 - i][M - 1 - j], 0) + 1
            mp[(mat[N - 1 - i][j])] = mp.get(mat[N - 1 - i][j], 0) + 1
   
            x = 0
   
            # Iterate over the map
            for it in mp:
                x = max(x, mp[it])
              
   
            # Min changes to do to make all
            ans = ans + 4 - x
   
            # Four elements equal
            mp.clear()
           
    # Make the middle row palindromic
    if (N % 2 == 1) :
        for i in range(M // 2):
            if (mat[N // 2][i]
                != mat[N // 2][M - 1 - i]) :
                ans += 1
          
    if (M % 2 == 1) :
        for i in range(N // 2):
   
            # Make the middle column
            # palindromic
            if (mat[i][M // 2]
                != mat[N - 1 - i][M // 2]):
                ans += 1
          
    # Print minimum changes
    print(ans)
   
# Driver Code
  
# Given matrix
mat = [[ 1, 2, 3 ],
        [ 4, 5, 3 ],
        [1, 2, 1 ]] 
   
# Function Call
minchanges(mat)
  
# This code is contributed by susmitakundugoaldanga


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
  
  // Function to count minimum
  // changes to make the matrix
  // palindromic
  static void minchanges(int [,]mat)
  {
  
    // Rows in the matrix
    int N = mat.GetLength(0);
  
    // Columns in the matrix
    int M = mat.GetLength(1);
  
    int i, j, ans = 0, x;
    Dictionary<int,int> mp = new Dictionary<int,int>();
  
    // Traverse the given matrix
    for (i = 0; i < N / 2; i++) 
    {
      for (j = 0; j < M / 2; j++)
      {
  
        // Store the frequency of
        // the four cells            
        if(mp.ContainsKey(mat[i,M - 1 - j]))
        {
          mp[(mat[i,M - 1 - j])]= 
            mp[(mat[i,M - 1 - j])] + 1;
        }
        else
        {
          mp.Add(mat[i,M - 1 - j], 1);
        }
        if(mp.ContainsKey(mat[i,j]))
        {
          mp[(mat[i,j])] = mp[(mat[i,j])] + 1;
        }
        else
        {
          mp.Add(mat[i,j], 1);
        }
  
        if(mp.ContainsKey(mat[N - 1 - i,M - 1 - j]))
        {
          mp[(mat[N - 1 - i,M - 1 - j])]= 
            mp[(mat[N - 1 - i,M - 1 - j])] + 1;
        }
        else
        {
          mp.Add(mat[N - 1 - i,M - 1 - j], 1);
        }
        if(mp.ContainsKey(mat[N - 1 - i,j]))
        {
          mp[(mat[N - 1 - i,j])] =
            mp[(mat[N - 1 - i,j)]]+1;
        }
        else
        {
          mp.Add(mat[N - 1 - i,j], 1);
        }
        x = 0;
  
        // Iterate over the map
        foreach (KeyValuePair<int,int> it in mp)
        {
          x = Math.Max(x, it.Value);
        }
  
        // Min changes to do to make all
        ans = ans + 4 - x;
  
        // Four elements equal
        mp.Clear();
      }
    }
  
    // Make the middle row palindromic
    if (N % 2 == 1) 
    {
      for (i = 0; i < M / 2; i++)
      {
        if (mat[N / 2,i]
            != mat[N / 2,M - 1 - i])
          ans++;
      }
    }
  
    if (M % 2 == 1) 
    {
      for (i = 0; i < N / 2; i++) 
      {
  
        // Make the middle column
        // palindromic
        if (mat[i,M / 2]
            != mat[N - 1 - i,M / 2])
          ans++;
      }
    }
  
    // Print minimum changes
    Console.Write(ans);
  }
  
  // Driver Code
  public static void Main(String[] args)
  {
  
    // Given matrix
    int [,]mat = { { 1, 2, 3 },
                  { 4, 5, 3 },
                  { 1, 2, 1 } };
  
    // Function Call
    minchanges(mat);
  }
}
  
// This code contributed by shikhasingrajput


Javascript




<script>
      // JavaScript program for the above approach
      // Function to count minimum
      // changes to make the matrix
      // palindromic
      function minchanges(mat) {
        // Rows in the matrix
        var N = mat.length;
  
        // Columns in the matrix
        var M = mat[0].length;
  
        var i,
          j,
          ans = 0,
          x;
        var mp = {};
  
        // Traverse the given matrix
        for (i = 0; i < parseInt(N / 2); i++) {
          for (j = 0; j < parseInt(M / 2); j++) {
            // Store the frequency of
            // the four cells
            if (mp.hasOwnProperty(mat[i][M - 1 - j])) {
              mp[(mat[i][M - 1 - j])] = mp[(mat[i][M - 1 - j])] + 1;
            
            else {
              mp[(mat[i][M - 1 - j])] = 1;
            }
            if (mp.hasOwnProperty(mat[i][j])) {
              mp[(mat[(i, j)])] = mp[(mat[i][j])] + 1;
            
            else {
              mp[(mat[i][j])] = 1;
            }
  
            if (mp.hasOwnProperty(mat[N - 1 - i][M - 1 - j])) {
              mp[(mat[N - 1 - i][M - 1 - j])] = mp[(mat[N - 1 - i][M - 1 - j])] + 1;
            
            else {
              mp[(mat[N - 1 - i][M - 1 - j])] = 1;
            }
            if (mp.hasOwnProperty(mat[N - 1 - i][j])) {
              mp[(mat[N - 1 - i][j])] = mp[(mat[N - 1 - i][j])] + 1;
            
            else {
              mp[(mat[(N - 1 - i, j)])] = 1;
            }
            x = 0;
  
            // Iterate over the map
            for (const [key, value] of Object.entries(mp)) {
              x = Math.max(x, value);
            }
  
            // Min changes to do to make all
            ans = ans + 4 - x;
  
            // Four elements equal
            mp = {};
          }
        }
  
        // Make the middle row palindromic
        if (N % 2 === 1) {
          for (i = 0; i < parseInt(M / 2); i++) {
            if (mat[parseInt(N / 2)][i] !=
                    mat[parseInt(N / 2)][M - 1 - i])
              ans++;
          }
        }
  
        if (M % 2 === 1) {
          for (i = 0; i < parseInt(N / 2); i++) {
            // Make the middle column
            // palindromic
            if (mat[i][parseInt(M / 2)] != 
                    mat[N - 1 - i][parseInt(M / 2)])
              ans++;
          }
        }
  
        // Print minimum changes
        document.write(ans);
      }
  
      // Driver Code
      // Given matrix
      var mat = [
        [1, 2, 3],
        [4, 5, 3],
        [1, 2, 1],
      ];
  
      // Function Call
      minchanges(mat);
</script>


Output: 

2

 

Time Complexity: O(N × M)
Auxiliary Space: O(1) 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments