There are many points in two-dimensional space which need to be visited in a specific sequence. Path from one point to other is always chosen as shortest path and path segments are always aligned with grid lines. Now we are given the path which is chosen for visiting the points, we need to tell the minimum number of points that must be needed to generate given path. Examples:
In above diagram, we can see that there must be at least 3 points to get above path, which are denoted by A, B and C
We can solve this problem by observing the pattern of movement when visiting the stops. If we want to take the shortest path from one point to another point then we will move in either one or max two directions i.e. it is always possible to reach the other point following maximum two directions and if more than two directions are used then that path won’t be shortest, for example, path LLURD can be replaced with LLL only, so to find minimum number of stops in the path, we will loop over the characters of the path and maintain a map of directions taken till now.Â
If at any index we found both ‘L’ as well as ‘R’ or we found both ‘U’ as well as ‘D’ then there must be a stop at current index, so we will increase the stop count by one and we will clear the map for next segment. Total time complexity of the solution will be O(N)Â
Implementation:
CPP
// C++ program to find minimum number of points // in a given path #include <bits/stdc++.h> using namespace std; Â
// method returns minimum number of points in given path int numberOfPointInPath(string path) { Â int N = path.length(); Â
 // Map to store last occurrence of direction  map< char , int > dirMap; Â
 // variable to store count of points till now,  // initializing from 1 to count first point  int points = 1; Â
 // looping over all characters of path string  for ( int i = 0; i < N; i++) { Â
  // storing current direction in curDir   // variable   char curDir = path[i]; Â
  // marking current direction as visited   dirMap[curDir] = 1; Â
  // if at current index, we found both 'L'   // and 'R' or 'U' and 'D' then current   // index must be a point   if ((dirMap[ 'L' ] && dirMap[ 'R' ]) ||    (dirMap[ 'U' ] && dirMap[ 'D' ])) {        // clearing the map for next segment    dirMap.clear(); Â
   // increasing point count    points++; Â
   // revisiting current direction for next segment    dirMap[curDir] = 1;   }  } Â
 // +1 to count the last point also  return (points + 1); } Â
// Driver code to test above methods int main() { Â string path = "LLUUULLDD" ; Â cout << numberOfPointInPath(path) << endl; Â return 0; } |
Java
// Java program to find minimum number of points // in a given path import java.util.*; public class GFG { Â
  // method returns minimum number of points in given path   public static int numberOfPointInPath(String path)   {     int N = path.length(); Â
    // Map to store last occurrence of direction     TreeMap<Character, Integer> dirMap       = new TreeMap<Character, Integer>(); Â
    // variable to store count of points till now,     // initializing from 1 to count first point     int points = 1 ;     dirMap.put( 'L' , 0 );     dirMap.put( 'R' , 0 );     dirMap.put( 'D' , 0 );     dirMap.put( 'U' , 0 ); Â
    // looping over all characters of path string     for ( int i = 0 ; i < N; i++) { Â
      // storing current direction in curDir       // variable       char curDir = path.charAt(i); Â
      // marking current direction as visited       dirMap.put(curDir, 1 ); Â
      // if at current index, we found both 'L'       // and 'R' or 'U' and 'D' then current       // index must be a point       if ((dirMap.get( 'L' ) == 1            && dirMap.get( 'R' ) == 1 )           || (dirMap.get( 'U' ) == 1               && dirMap.get( 'D' ) == 1 )) { Â
        // clearing the map for next segment         dirMap.put( 'L' , 0 );         dirMap.put( 'R' , 0 );         dirMap.put( 'D' , 0 );         dirMap.put( 'U' , 0 ); Â
        // increasing point count         points++; Â
        // revisiting current direction for next         // segment         dirMap.put(curDir, 1 );       }     } Â
    // +1 to count the last point also     return (points + 1 );   } Â
  // Driver code to test above methods   public static void main(String[] args)   {     String path = "LLUUULLDD" ;     System.out.print(numberOfPointInPath(path));     System.out.print( "\n" );   } } Â
// This code is contributed by Aarti_Rathi |
Python3
# Python code implementation # method returns minimum number of points in given path def numberOfPointInPath(path): Â Â Â Â N = len (path) Â
    # Map to store last occurrence of direction     dirMap = {} Â
    # variable to store count of points till now,     # initializing from 1 to count first point     points = 1 Â
    # looping over all characters of path string     for i in range (N):         # storing current direction in curDir         # variable         curDir = path[i] Â
        # marking current direction as visited         dirMap[curDir] = 1 Â
        # if at current index, we found both 'L'         # and 'R' or 'U' and 'D' then current         # index must be a point         if ( 'L' in dirMap and 'R' in dirMap) or ( 'U' in dirMap and 'D' in dirMap):             dirMap.clear() Â
            # increasing point count             points = points + 1 Â
            # revisiting current direction for next segment             dirMap[curDir] = 1 Â
Â
    # +1 to count the last point also     return points + 1 Â
# Test path = "LLUUULLDD" print (numberOfPointInPath(path)) Â
# The code is contributed by Nidhi goel. |
C#
using System; using System.Collections.Generic; Â
public class GFG { Â Â Â Â public static int NumberOfPointInPath( string path) Â Â Â Â { Â Â Â Â Â Â Â Â int N = path.Length; Â
        // Dictionary to store last occurrence of direction         Dictionary< char , int > dirMap = new Dictionary< char , int >();         dirMap[ 'L' ] = 0;         dirMap[ 'R' ] = 0;         dirMap[ 'D' ] = 0;         dirMap[ 'U' ] = 0; Â
        // variable to store count of points till now,         // initializing from 1 to count first point         int points = 1; Â
        // looping over all characters of path string         for ( int i = 0; i < N; i++)         {             // storing current direction in curDir variable             char curDir = path[i]; Â
            // marking current direction as visited             dirMap[curDir] = 1; Â
            // if at current index, we found both 'L' and 'R'             // or 'U' and 'D' then current index must be a point             if ((dirMap[ 'L' ] == 1 && dirMap[ 'R' ] == 1)                 || (dirMap[ 'U' ] == 1 && dirMap[ 'D' ] == 1))             {                 // clearing the dictionary for next segment                 dirMap[ 'L' ] = 0;                 dirMap[ 'R' ] = 0;                 dirMap[ 'D' ] = 0;                 dirMap[ 'U' ] = 0; Â
                // increasing point count                 points++; Â
                // revisiting current direction for next segment                 dirMap[curDir] = 1;             }         } Â
        // +1 to count the last point also         return (points + 1);     } Â
    // Driver code to test above methods     public static void Main()     {         string path = "LLUUULLDD" ;         Console.Write(NumberOfPointInPath(path));         Console.Write( "\n" );     } } |
Javascript
<script> Â
// method returns minimum number of points in given path function numberOfPointInPath(path) { Â Â let N = path.length; Â
  // Map to store last occurrence of direction   let dirMap = new Map(); Â
  // variable to store count of points till now,   // initializing from 1 to count first point   let points = 1; Â
  // looping over all characters of path string   for (let i = 0; i < N; i++) {     // storing current direction in curDir     // variable     let curDir = path[i]; Â
    // marking current direction as visited     dirMap.set(curDir, 1); Â
    // if at current index, we found both 'L'     // and 'R' or 'U' and 'D' then current     // index must be a point     if ((dirMap.has( 'L' ) && dirMap.has( 'R' )) || (dirMap.has( 'U' ) && dirMap.has( 'D' ))) {       // clearing the map for next segment       dirMap.clear(); Â
      // increasing point count       points++; Â
      // revisiting current direction for next segment       dirMap.set(curDir, 1);     }   } Â
  // +1 to count the last point also   return points + 1; } Â
// Test let path = "LLUUULLDD" ; console.log(numberOfPointInPath(path)); Â
Â
</script> |
3
Time Complexity: O(n*logn).
Auxiliary Space: O(n)
If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!