Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimize the difference between the maximum and minimum values of the modified...

Minimize the difference between the maximum and minimum values of the modified array

Given an array A of n integers and integer X. You may choose any integer between -X\leq k\leq X    , and add k to A[i] for each 0\leq i \leq n-1    . The task is to find the smallest possible difference between the maximum value of A and the minimum value of A after updating array A.

Examples: 

Input: arr[] = {1, 3, 6}, x = 3
Output: 0
New array is [3, 3, 3] or [4, 4, 4].

Input: arr[] = {0, 10}, x = 2
Output: 6
New array is [2, 8] i.e add 2 to a[0] and subtract -2 from a[1].

Approach: Let A be the original array. Towards trying to minimize max(A) – min(A), let’s try to minimize max(A) and maximize min(A) separately.

The smallest possible value of max(A) is max(A) – K, as the value max(A) cannot go lower. Similarly, the largest possible value of min(A) is min(A) + K. So the quantity max(A) – min(A) is at least ans = (max(A) – K) – (min(A) + K).

We can attain this value, by the following modifications 

  • If A[i] <= min(A) + K, then A[i] = min(A) + K
  • Else, if A[i] >= max(A) – K, then A[i] = max(A) – K

If ans < 0, the best answer we could have is ans = 0, also using the same modification. 

Below is the implementation of above approach. 

C++




// C++ program to find the minimum difference.
#include <bits/stdc++.h>
using namespace std;
 
// Function to return required minimum difference
int minDiff(int n, int x, int A[])
{
    int mn = A[0], mx = A[0];
 
    // finding minimum and maximum values
    for (int i = 0; i < n; ++i) {
        mn = min(mn, A[i]);
        mx = max(mx, A[i]);
    }
 
    // returning minimum possible difference
    return max(0, mx - mn - 2 * x);
}
 
// Driver program
int main()
{
 
    int n = 3, x = 3;
    int A[] = { 1, 3, 6 };
 
    // function to return the answer
    cout << minDiff(n, x, A);
 
    return 0;
}


Java




// Java program to find the minimum difference.
 
import java.util.*;
class GFG
{
     
    // Function to return required minimum difference
    static int minDiff(int n, int x, int A[])
    {
        int mn = A[0], mx = A[0];
     
        // finding minimum and maximum values
        for (int i = 0; i < n; ++i) {
            mn = Math.min(mn, A[i]);
            mx = Math.max(mx, A[i]);
        }
     
        // returning minimum possible difference
        return Math.max(0, mx - mn - 2 * x);
    }
     
    // Driver program
    public static void main(String []args)
    {
     
        int n = 3, x = 3;
        int A[] = { 1, 3, 6 };
     
        // function to return the answer
        System.out.println(minDiff(n, x, A));
     
         
    }
 
}
 
// This code is contributed by ihritik


Python3




# Python program to find the minimum difference.
 
     
# Function to return required minimum difference
def minDiff( n,  x,  A):
  
    mn =  A[0]
    mx =  A[0]
 
    # finding minimum and maximum values
    for i in range(0,n):
         mn = min( mn,  A[ i])
         mx = max( mx,  A[ i])
      
 
    # returning minimum possible difference
    return max(0,  mx -  mn - 2 *  x)
  
     
# Driver program
 
n = 3
x = 3
A = [1, 3, 6 ]
 
# function to return the answer
print(minDiff( n,  x,  A))
 
# This code is contributed by ihritik


C#




// C# program to find the minimum difference.
 
using System;
class GFG
{
     
    // Function to return required minimum difference
    static int minDiff(int n, int x, int []A)
    {
        int mn = A[0], mx = A[0];
     
        // finding minimum and maximum values
        for (int i = 0; i < n; ++i) {
            mn = Math.Min(mn, A[i]);
            mx = Math.Max(mx, A[i]);
        }
     
        // returning minimum possible difference
        return Math.Max(0, mx - mn - 2 * x);
    }
     
    // Driver program
    public static void Main()
    {
     
        int n = 3, x = 3;
        int []A = { 1, 3, 6 };
     
        // function to return the answer
        Console.WriteLine(minDiff(n, x, A));
            
    }
}
 
// This code is contributed by ihritik


PHP




<?php
 
// PHP program to find the minimum difference.
 
     
// Function to return required minimum difference
function minDiff($n, $x, $A)
{
    $mn = $A[0];
    $mx = $A[0];
 
    // finding minimum and maximum values
    for ($i = 0; $i < $n; ++$i) {
        $mn = min($mn, $A[$i]);
        $mx = max($mx, $A[$i]);
    }
 
    // returning minimum possible difference
    return max(0, $mx - $mn - 2 * $x);
}
     
// Driver program
 
$n = 3;
$x = 3;
$A = array( 1, 3, 6 );
 
// function to return the answer
echo minDiff($n, $x, $A);
 
// This code is contributed by ihritik
 
?>


Javascript




<script>
 
// JavaScript program to find the minimum difference.
 
// Function to return required minimum difference
function  minDiff( n,  x, A)
{
    var mn = A[0], mx = A[0];
 
    // finding minimum and maximum values
    for (var i = 0; i < n; ++i) {
        mn = Math.min(mn, A[i]);
        mx = Math.max(mx, A[i]);
    }
 
    // returning minimum possible difference
    return Math.max(0, mx - mn - 2 * x);
}
 
var n = 3, x = 3;
var A = [ 1, 3, 6 ];
 
// function to return the answer
document.write( minDiff(n, x, A));
 
// This code is contributed by SoumikMondal
 
</script>


Output

0

Complexity Analysis:

  • Time Complexity: O(n)
  • Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments