Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimize Array by removing all distinct element pairs

Minimize Array by removing all distinct element pairs

Given an array A[] of length N, the task is to find the minimum size of the array after selecting and removing distinct element pairs any number of times.

Examples:

Input: A[] = {1, 7, 7, 4, 4, 4}, N = 6
Output: 0
Explanation: 3 pairs containing distinct elements can be formed from the array. Thus, no element left in the array.

Input: A[] = {25, 25}, N = 2
Output: 2
Explanation: No pairs containing distinct elements can be formed from the array. Thus, 2 elements left in the array.

 

Solution: Follow the steps below to solve this problem:

  • Create a map, say mp to store the frequency of each element in the array. Let the maximum frequency of any element be m.
  • If the length of the array is even:
    • Notice that if m is less than or equal to (N/2), then every element can form a pair with another. Thus, output 0.
    • Otherwise, the minimum size of the array i.e, the number of elements left without a pair are given by:
  • If the length of the array is odd:
    • Notice that if m is greater than or equal to (N/2), then 1 element will always be left without any pair. Thus, output 1.
    • Otherwise, the minimum size of the array will again be given by (2*mN).

Below is the implementation of the above code:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum size of
// of the array after performing a set of
// operations
int minSize(int N, int A[])
{
    // Map to store the frequency of each
    // element of the array
    map<int, int> mpp;
 
    // Stores the maximum frequency of an
    // element
    int m = 0;
 
    // Loop to find the maximum frequency of
    // an element
    for (int i = 0; i < N; ++i) {
 
        // Increment the frequency
        mpp[A[i]]++;
 
        // Stores the maximum frequency
        m = max(mpp[A[i]], m);
    }
 
    // If N is even
    if (N % 2 == 0) {
 
        // If m is less than or equal to N/2
        if (m <= N / 2) {
            return 0;
        }
        else {
            return (2 * m) - N;
        }
    }
    else {
 
        // If m is less than or equal to N/2
        if (m <= N / 2) {
            return 1;
        }
        else {
            return (2 * m) - N;
        }
    }
}
 
// Driver Code
int main()
{
    // Given input
    int N = 6;
    int A[N] = { 1, 7, 7, 4, 4, 4 };
 
    // Function Call
    cout << minSize(N, A);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
  // Function to find the minimum size of
  // of the array after performing a set of
  // operations
  static int minSize(int N, int[] A)
  {
 
    // Map to store the frequency of each
    // element of the array
    HashMap<Integer, Integer> mpp
      = new HashMap<Integer, Integer>();
 
    // Stores the maximum frequency of an
    // element
    int m = 0;
 
    // Loop to find the maximum frequency of
    // an element
    for (int i = 0; i < N; ++i) {
 
      // Increment the frequency
      if (mpp.containsKey(A[i])) {
        mpp.put(A[i], mpp.get(A[i]) + 1);
      }
      else {
        mpp.put(A[i], 1);
      }
 
      // Stores the maximum frequency
      m = Math.max(mpp.get(A[i]), m);
    }
 
    // If N is even
    if (N % 2 == 0) {
 
      // If m is less than or equal to N/2
      if (m <= N / 2) {
        return 0;
      }
      else {
        return (2 * m) - N;
      }
    }
    else {
 
      // If m is less than or equal to N/2
      if (m <= N / 2) {
        return 1;
      }
      else {
        return (2 * m) - N;
      }
    }
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    // Given input
    int N = 6;
    int[] A = { 1, 7, 7, 4, 4, 4 };
 
    // Function Call
    System.out.println(minSize(N, A));
  }
}
 
// This code is contributed by ukasp.


Python3




# Python program for the above approach
 
# Function to find the minimum size of
# of the array after performing a set of
# operations
def minSize(N, A):
     
    # Map to store the frequency of each
    # element of the array
    mpp = {}
     
    # Stores the maximum frequency of an
    # element   
    m = 0
     
    # Loop to find the maximum frequency of
    # an element
    for i in range(N):
         
        if A[i] not in mpp:
            mpp[A[i]]=0
             
        # Increment the frequency
        mpp[A[i]]+=1
         
        # Stores the maximum frequency
        m = max(mpp[A[i]], m)
         
    # If N is even
    if (N % 2 == 0):
         
        # If m is less than or equal to N/2
        if (m <= N / 2):
            return 0
             
        else:
            return (2 * m) - N
             
    else:
         
        # If m is less than or equal to N/2
        if (m <= N / 2):
            return 1
             
        else:
            return (2 * m) - N
             
# Driver Code
# Given input
N = 6
A = [1, 7, 7, 4, 4, 4]
 
# Function Call
print(minSize(N, A))
 
# This code is contributed by Shubham Singh


C#




// C# program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to find the minimum size of
  // of the array after performing a set of
  // operations
  static int minSize(int N, int []A)
  {
 
    // Map to store the frequency of each
    // element of the array
    Dictionary<int, int> mpp =
      new Dictionary<int, int>();
 
    // Stores the maximum frequency of an
    // element
    int m = 0;
 
    // Loop to find the maximum frequency of
    // an element
    for (int i = 0; i < N; ++i) {
 
      // Increment the frequency
      if (mpp.ContainsKey(A[i]))
      {
        mpp[A[i]] = mpp[A[i]] + 1;
      }
      else
      {
        mpp.Add(A[i], 1);
      }
 
      // Stores the maximum frequency
      m = Math.Max(mpp[A[i]], m);
    }
 
    // If N is even
    if (N % 2 == 0) {
 
      // If m is less than or equal to N/2
      if (m <= N / 2) {
        return 0;
      }
      else {
        return (2 * m) - N;
      }
    }
    else {
 
      // If m is less than or equal to N/2
      if (m <= N / 2) {
        return 1;
      }
      else {
        return (2 * m) - N;
      }
    }
  }
 
  // Driver Code
  public static void Main()
  {
    // Given input
    int N = 6;
    int []A = { 1, 7, 7, 4, 4, 4 };
 
    // Function Call
    Console.Write(minSize(N, A));
 
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find the minimum size of
       // of the array after performing a set of
       // operations
       function minSize(N, A) {
           // Map to store the frequency of each
           // element of the array
           let mpp = new Map();
 
           // Stores the maximum frequency of an
           // element
           let m = 0;
 
           // Loop to find the maximum frequency of
           // an element
           for (let i = 0; i < N; ++i) {
 
               // Increment the frequency
               if (!mpp.has(A[i]))
                   mpp.set(A[i], 1);
               else
                   mpp.set(A[i], mpp.get(A[i]) + 1)
               // Stores the maximum frequency
               m = Math.max(mpp.get(A[i]), m);
           }
 
           // If N is even
           if (N % 2 == 0) {
 
               // If m is less than or equal to N/2
               if (m <= Math.floor(N / 2)) {
                   return 0;
               }
               else {
                   return (2 * m) - N;
               }
           }
           else {
 
               // If m is less than or equal to N/2
               if (m <= Math.floor(N / 2)) {
                   return 1;
               }
               else {
                   return (2 * m) - N;
               }
           }
       }
 
       // Driver Code
 
       // Given input
       let N = 6;
       let A = [1, 7, 7, 4, 4, 4]
 
       // Function Call
       document.write(minSize(N, A));
 
        // This code is contributed by Potta Lokesh
   </script>


 
 

Output: 

0

 

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
16 May, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments