Given an array arr[] of N integers, the task is to find the maximum length of any sub-array of arr[] which satisfies one of the given conditions:
- The subarray is strictly increasing.
- The subarray is strictly decreasing.
- The subarray is first strictly increasing then strictly decreasing.
Examples:
Input: arr[] = {1, 2, 2, 1, 3}
Output: 2
{1, 2}, {2, 1} and {1, 3} are the valid subarrays.Input: arr[] = {5, 4, 3, 2, 1, 2, 3, 4}
Output: 5
{5, 4, 3, 2, 1} is the required subarray.
Approach: Create an array incEnding[] where incEnding[i] will store the length of the largest increasing subarray of the given array ending at index i. Similarly, create another array decStarting[] where decStarting[i] will store the length of the largest decreasing subarray of the given array starting at the index i. Now start traversing the original array and for every element, assume it to be the mid of the required subarray then the length of the largest required subarray whose mid at index i will be incEnding[i] + decStarting[i] – 1. Note that 1 is subtracted because arr[i] will be counted twice for both the increasing and the decreasing subarray.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the largest // required sub-array int largestSubArr( int arr[], int n) { // incEnding[i] will store the length // of the largest increasing subarray // ending at arr[i] int incEnding[n] = { 0 }; incEnding[0] = 1; for ( int i = 1; i < n; i++) { // If current element is greater than // the previous element then it // can be a part of the previous // increasing subarray if (arr[i - 1] < arr[i]) incEnding[i] = incEnding[i - 1] + 1; else incEnding[i] = 1; } // decStarting[i] will store the length // of the largest decreasing subarray // starting at arr[i] int decStarting[n] = { 0 }; decStarting[n - 1] = 1; for ( int i = n - 2; i >= 0; i--) { // If current element is greater than // the next element then it can be a part // of the decreasing subarray // with the next element if (arr[i + 1] < arr[i]) decStarting[i] = decStarting[i + 1] + 1; else decStarting[i] = 1; } // To store the length of the // maximum required subarray int maxSubArr = 0; // Assume every element to be the mid // point of the required array for ( int i = 0; i < n; i++) { // 1 has to be subtracted because the // current element will be counted for // both the increasing and // the decreasing subarray maxSubArr = max(maxSubArr, incEnding[i] + decStarting[i] - 1); } return maxSubArr; } // Driver code int main() { int arr[] = { 1, 2, 2, 1, 3 }; int n = sizeof (arr) / sizeof ( int ); cout << largestSubArr(arr, n); return 0; } |
Java
// Java implementation of the above approach class GFG { // Function to return the largest // required sub-array static int largestSubArr( int arr[], int n) { // incEnding[i] will store the length // of the largest increasing subarray // ending at arr[i] int incEnding[] = new int [n]; int i; for (i = 0 ; i < n ; i++) incEnding[i] = 0 ; incEnding[ 0 ] = 1 ; for (i = 1 ; i < n; i++) { // If current element is greater than // the previous element then it // can be a part of the previous // increasing subarray if (arr[i - 1 ] < arr[i]) incEnding[i] = incEnding[i - 1 ] + 1 ; else incEnding[i] = 1 ; } // decStarting[i] will store the length // of the largest decreasing subarray // starting at arr[i] int decStarting[] = new int [n]; for (i = 0 ; i < n ; i++) decStarting[i] = 0 ; decStarting[n - 1 ] = 1 ; for (i = n - 2 ; i >= 0 ; i--) { // If current element is greater than // the next element then it can be a part // of the decreasing subarray // with the next element if (arr[i + 1 ] < arr[i]) decStarting[i] = decStarting[i + 1 ] + 1 ; else decStarting[i] = 1 ; } // To store the length of the // maximum required subarray int maxSubArr = 0 ; // Assume every element to be the mid // point of the required array for (i = 0 ; i < n; i++) { // 1 has to be subtracted because the // current element will be counted for // both the increasing and // the decreasing subarray maxSubArr = Math.max(maxSubArr, incEnding[i] + decStarting[i] - 1 ); } return maxSubArr; } // Driver code public static void main (String[] args) { int arr[] = { 1 , 2 , 2 , 1 , 3 }; int n = arr.length; System.out.println(largestSubArr(arr, n)); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of the approach # Function to return the largest # required sub-array def largestSubArr(arr, n) : # incEnding[i] will store the length # of the largest increasing subarray # ending at arr[i] incEnding = [ 0 ] * n incEnding[ 0 ] = 1 for i in range ( 1 , n) : # If current element is greater than # the previous element then it # can be a part of the previous # increasing subarray if (arr[i - 1 ] < arr[i]) : incEnding[i] = incEnding[i - 1 ] + 1 else : incEnding[i] = 1 # decStarting[i] will store the length # of the largest decreasing subarray # starting at arr[i] decStarting = [ 0 ] * n decStarting[n - 1 ] = 1 for i in range (n - 2 , - 1 , - 1 ): # If current element is greater than # the next element then it can be a part # of the decreasing subarray # with the next element if (arr[i + 1 ] < arr[i]) : decStarting[i] = decStarting[i + 1 ] + 1 else : decStarting[i] = 1 # To store the length of the # maximum required subarray maxSubArr = 0 # Assume every element to be the mid # point of the required array for i in range (n): # 1 has to be subtracted because the # current element will be counted for # both the increasing and # the decreasing subarray maxSubArr = max (maxSubArr, incEnding[i] + decStarting[i] - 1 ) return maxSubArr # Driver code arr = [ 1 , 2 , 2 , 1 , 3 ] n = len (arr) print (largestSubArr(arr, n)) # This code is contributed by # divyamohan123 |
C#
// C# implementation of the above approach using System; class GFG { // Function to return the largest // required sub-array static int largestSubArr( int []arr, int n) { // incEnding[i] will store the length // of the largest increasing subarray // ending at arr[i] int []incEnding = new int [n]; int i; for (i = 0; i < n ; i++) incEnding[i] = 0; incEnding[0] = 1; for (i = 1; i < n; i++) { // If current element is greater than // the previous element then it // can be a part of the previous // increasing subarray if (arr[i - 1] < arr[i]) incEnding[i] = incEnding[i - 1] + 1; else incEnding[i] = 1; } // decStarting[i] will store the length // of the largest decreasing subarray // starting at arr[i] int []decStarting = new int [n]; for (i = 0; i < n ; i++) decStarting[i] = 0; decStarting[n - 1] = 1; for (i = n - 2; i >= 0; i--) { // If current element is greater than // the next element then it can be a part // of the decreasing subarray // with the next element if (arr[i + 1] < arr[i]) decStarting[i] = decStarting[i + 1] + 1; else decStarting[i] = 1; } // To store the length of the // maximum required subarray int maxSubArr = 0; // Assume every element to be the mid // point of the required array for (i = 0; i < n; i++) { // 1 has to be subtracted because the // current element will be counted for // both the increasing and // the decreasing subarray maxSubArr = Math.Max(maxSubArr, incEnding[i] + decStarting[i] - 1); } return maxSubArr; } // Driver code public static void Main (String[] args) { int []arr = { 1, 2, 2, 1, 3 }; int n = arr.Length; Console.WriteLine(largestSubArr(arr, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation of the approach // Function to return the largest // required sub-array function largestSubArr(arr, n) { // incEnding[i] will store the length // of the largest increasing subarray // ending at arr[i] var incEnding = Array(n).fill(0); incEnding[0] = 1; for ( var i = 1; i < n; i++) { // If current element is greater than // the previous element then it // can be a part of the previous // increasing subarray if (arr[i - 1] < arr[i]) incEnding[i] = incEnding[i - 1] + 1; else incEnding[i] = 1; } // decStarting[i] will store the length // of the largest decreasing subarray // starting at arr[i] var decStarting = Array(n).fill(0); decStarting[n - 1] = 1; for ( var i = n - 2; i >= 0; i--) { // If current element is greater than // the next element then it can be a part // of the decreasing subarray // with the next element if (arr[i + 1] < arr[i]) decStarting[i] = decStarting[i + 1] + 1; else decStarting[i] = 1; } // To store the length of the // maximum required subarray var maxSubArr = 0; // Assume every element to be the mid // point of the required array for ( var i = 0; i < n; i++) { // 1 has to be subtracted because the // current element will be counted for // both the increasing and // the decreasing subarray maxSubArr = Math.max(maxSubArr, incEnding[i] + decStarting[i] - 1); } return maxSubArr; } // Driver code var arr = [ 1, 2, 2, 1, 3 ]; var n = arr.length; document.write(largestSubArr(arr, n)); // This code is contributed by itsok </script> |
2
Time complexity: O(n) where n is the size of the given array
Auxiliary space: O(n) because using extra space for arrays incEnding and decStarting
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!