Tuesday, December 31, 2024
Google search engine
HomeData Modelling & AIMaximum count of pairs such that element at each index i is...

Maximum count of pairs such that element at each index i is included in i pairs

Given an array arr[] and an integer N, the task is to find the maximum number of pairs that can be formed such that ith index is included in almost arr[i] pairs.

Examples:

Input: arr[] = {2, 2, 3, 4} 
Output
5
1 3
2 4
2 4
3 4
3 4
Explanation: For the given array, a maximum of 5 pairs can be created where 1st index is included in 1 pair, 2nd index in 2 pairs, 3rd index in 3 pairs and 4th index in 4 pairs as shown above. 

Input: arr[] = {8, 2, 0, 1, 1}
Output
4
1 2
1 5
1 4
1 2

 

Approach: The given problem can be solved using a greedy approach. It can be observed that the most optimal choice at every step is to choose the elements with the maximum value and create their respective pair. Using this observation, follow the below steps to solve this problem: 

  • Create a Max Priority Queue which stores the indices of the given array in decreasing order of their respective array value.
  • Create a loop to iterate the priority queue until there are more than two elements in it and follow the below steps:
    • Select the top two indices at the priority queue, append their pair into an answer array.
    • Reinsert them into the priority queue after decrementing their respective array values if their values are greater than 0.
  • Print all the pairs in the answer array.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
void maxPairs(int arr[], int n)
{
    // Stores the final list
    // of pairs required
    vector<int> matchList;
     
    // Max Priority Queue to
    // store induced in order
    // of their array value
    priority_queue<int> pq;
     
    // Loop to iterate arr[]
    for (int i = 0; i < n; i++)
    {
        if (arr[i] > 0)
            pq.push(i);
    }
  
    // Loop to iterate pq
    // till it has more
    // than 2 elements
    while (pq.size() >= 2)
    {
        // Stores the maximum
        int top = pq.top();
        pq.pop();
  
        // Stores the second
        // maximum
        int cur = pq.top();
        pq.pop();
  
        // Insert pair into the
        // final list
        matchList.push_back(top + 1);
        matchList.push_back(cur + 1);
        arr[top]--;
        arr[cur]--;
  
        if (arr[top] > 0)
            pq.push(top);
  
        if (arr[cur] > 0)
            pq.push(cur);
    }
     
    // Print Answer
    cout << (matchList.size() / 2) << "\n";
    for (int i = 0; i < matchList.size(); i += 2)
    {
        cout << matchList[i] << " " << matchList[i+1] << "\n";
    }
}
  
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4 };
    int n = sizeof(arr)/sizeof(arr[0]);
    maxPairs(arr,n);
  
    return 0;
}
 
// This code is contributed by Aditya Patil


Java




// Java implementation of above approach
import java.io.*;
import java.util.*;
class GFG {
    public static void maxPairs(int arr[])
    {
        // Stores the final list
        // of pairs required
        List<Integer> matchList = new ArrayList<>();
  
        // Max Priority Queue to
        // store induced in order
        // of their array value
        PriorityQueue<Integer> pq = new PriorityQueue<>(
            (x, y) -> arr[y] - arr[x]);
  
        // Loop to iterate arr[]
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] > 0)
                pq.add(i);
        }
  
        // Loop to iterate pq
        // till it has more
        // than 2 elements
        while (pq.size() >= 2) {
  
            // Stores the maximum
            int top = pq.poll();
  
            // Stores the second
            // maximum
            int cur = pq.poll();
  
            // Insert pair into the
            // final list
            matchList.add(top + 1);
            matchList.add(cur + 1);
            arr[top]--;
            arr[cur]--;
  
            if (arr[top] > 0)
                pq.add(top);
  
            if (arr[cur] > 0)
                pq.add(cur);
        }
  
        // Print Answer
        System.out.println(matchList.size() / 2);
        for (int i = 0; i < matchList.size(); i += 2) {
            System.out.println(matchList.get(i) + " "
                               + matchList.get(i + 1));
        }
    }
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 4 };
        maxPairs(arr);
    }
}


Python3




# Python implementation of the approach
import bisect
 
def maxPairs(arr,n):
    # Stores the final list
    # of pairs required
    matchList=[]
     
    # Max Priority Queue to
    # store induced in order
    # of their array value
    pq=[]
     
    #Loop to iterate arr[]
    for i in range(n):
        if(arr[i]>0):
            bisect.insort(pq,i)
     
    # Loop to iterate pq
    # till it has more
    # than 2 elements
    while(len(pq)>=2):
        # Stores the maximum
        top=pq[-1]
        pq.pop(-1)
         
        # Stores the second
        cur=pq[-1]
        pq.pop(-1)
         
        # Insert pair into the
        # final list
        matchList.append(top+1)
        matchList.append(cur+1)
         
        arr[top]=arr[top]-1
        arr[cur]=arr[cur]-1
         
        if(arr[top]>0):
            bisect.insort(pq,top)
             
        if(arr[cur]>0):
            bisect.insort(pq,cur)
     
    # Print Answer
    print(len(matchList)//2)
    for i in range(0,len(matchList),2):
        print(matchList[i],end=" ")
        print(matchList[i+1])
         
# Driver code
arr=[1,2,3,4]
n=len(arr)
maxPairs(arr,n)
 
 
# This code is contributed by Pushpesh Raj.


C#




using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
 
class HelloWorld {
     
    // Custom sort function.
    class GFG : IComparer<int>
    {
        public int Compare(int x, int y)
        {
            // "CompareTo()" method
            return y.CompareTo(x);
 
        }
    }
     
    public static void maxPairs(int[] arr, int n)
    {
        // Stores the final list
        // of pairs required
        List<int> matchList = new List<int>();;
 
        // Max Priority Queue to
        // store induced in order
        // of their array value
        List<int> pq = new List<int>();
 
        // Loop to iterate arr[]
        for (int i = 0; i < n; i++)
        {
            if (arr[i] > 0)
                pq.Add(i);
        }
 
        // Loop to iterate pq
        // till it has more
        // than 2 elements
         
        // Sort it.
        GFG gg = new GFG();
        pq.Sort(gg);
         
        while (pq.Count >= 2)
        {
            // Stores the maximum
            int top = pq.First();
            pq.RemoveAt(0);
 
            // Stores the second
            // maximum
            int cur = pq.First();
            pq.RemoveAt(0);
 
            // Insert pair into the
            // final list
            matchList.Add(top + 1);
            matchList.Add(cur + 1);
            arr[top]--;
            arr[cur]--;
 
            if (arr[top] > 0){
                pq.Add(top);
                pq.Sort(gg);
            }
                 
 
            if (arr[cur] > 0){
                pq.Add(cur);
                pq.Sort(gg);
            }
                 
        }
 
        // Print Answer
        Console.WriteLine(matchList.Count / 2);
        for (int i = 0; i < matchList.Count; i += 2)
        {
            Console.WriteLine(matchList[i] + " " + matchList[i+1]);
        }
    }
     
    // Driver Code.
    static void Main() {
         
        int[] arr = { 1, 2, 3, 4 };
        int n = arr.Length;
        maxPairs(arr,n);
    }
}
 
// The code is contributed by Arushi Jindal.


Javascript




// JavaScript implementation of the approach
function maxPairs(arr, n)
{
 
   // Stores the final list
    // of pairs required
    let matchList = [];
 
    // Max Priority Queue to
    // store induced in order
    // of their array value
    let pq = [];
 
    // Loop to iterate arr[]
    for (let i = 0; i < n; i++) {
        if (arr[i] > 0) {
            pq.push(i);
            pq.sort();
        }
    }
 
    // Loop to iterate pq
    // till it has more
    // than 2 elements
    while (pq.length >= 2) {
        // Stores the maximum
        let top = pq.pop();
 
        // Stores the second
        let cur = pq.pop();
 
        // Insert pair into the
        // final list
        matchList.push(top + 1);
        matchList.push(cur + 1);
 
        arr[top] = arr[top] - 1;
        arr[cur] = arr[cur] - 1;
 
        if (arr[top] > 0) {
            pq.push(top);
            pq.sort();
        }
 
        if (arr[cur] > 0) {
            pq.push(cur);
            pq.sort();
        }
    }
 
    // Print Answer
    console.log(matchList.length / 2);
    for (let i = 0; i < matchList.length; i += 2) {
        console.log(matchList[i], matchList[i + 1]);
    }
}
 
// Driver code
let arr = [1, 2, 3, 4];
let n = arr.length;
maxPairs(arr, n);
 
// This code is contributed by vinayetbi1.


Output

5
4 3
4 3
4 3
4 2
2 1

Time Complexity: O(M*log M), where M denotes the sum of all array elements
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments