Monday, January 27, 2025
Google search engine
HomeData Modelling & AILongest Consecutive Subsequence when only one insert operation is allowed

Longest Consecutive Subsequence when only one insert operation is allowed

Given a sequence of positive integers of length N. The only operation allowed is to insert a single integer of any value at any position in the sequence. The task is to find the sub-sequence of maximum length that contains consecutive values in increasing order.

Examples: 

Input: arr[] = {2, 1, 4, 5} 
Output:
Insert element with value 3 at the 3rd position.(1 based indexing) 
The new sequence becomes {2, 1, 3, 4, 5} 
Longest consecutive sub-sequence would be {2, 3, 4, 5}

Input: arr[] = {2, 1, 2, 3, 5, 7} c
Output:
 

Approach: The idea is to use Dynamic Programming
Let dp[val][0] be the length of required subsequence that ends in an element equal to val and the element is not inserted yet. Let dp[val][1] be the length of required subsequence that ends in an element equal to val and some element has been inserted already. 
Now break the problem into its subproblems as follows:
To calculate dp[val][0], as no element in inserted, the length of the subsequence will increase by 1 from its previous value 
dp[val][0] = 1 + dp[val – 1][0].

To calculate dp[val][1], consider these two cases:  

  1. When the element is already inserted for (val-1), then there would be an increment of length 1 from dp[ val-1 ][ 1 ]
  2. When the element has not been inserted yet, then the element with value (val-1) can be inserted . Hence there would be an increment of length 2 from dp[ val-2 ][ 0 ].

Take maximum of both the above cases. 
dp[val][1] = max(1 + dp[val – 1][1], 2 + dp[val – 2][0]).

Below is the implementation of the above approach:  

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the length of longest
// Consecutive subsequence after inserting an element
int LongestConsSeq(int arr[], int N)
{
 
    // Variable to find maximum value of the array
    int maxval = 1;
 
    // Calculating maximum value of the array
    for (int i = 0; i < N; i += 1) {
 
        maxval = max(maxval, arr[i]);
    }
 
    // Declaring the DP table
    int dp[maxval + 1][2] = { 0 };
 
    // Variable to store the maximum length
    int ans = 1;
 
    // Iterating for every value present in the array
    for (int i = 0; i < N; i += 1) {
 
        // Recurrence for dp[val][0]
        dp[arr[i]][0] = (1 + dp[arr[i] - 1][0]);
 
        // No value can be inserted before 1,
        // hence the element value should be
        // greater than 1 for this recurrence relation
        if (arr[i] >= 2)
 
            // Recurrence for dp[val][1]
            dp[arr[i]][1] = max(1 + dp[arr[i] - 1][1],
                                2 + dp[arr[i] - 2][0]);
        else
 
            // Maximum length of consecutive sequence
            // ending at 1 is equal to 1
            dp[arr[i]][1] = 1;
 
        // Update the ans variable with
        // the new maximum length possible
        ans = max(ans, dp[arr[i]][1]);
    }
 
    // Return the ans
    return ans;
}
 
// Driver code
int main()
{
    // Input array
    int arr[] = { 2, 1, 4, 5 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << LongestConsSeq(arr, N);
 
    return 0;
}


Java




// Java implementation of above approach
 
class GFG
{
    // Function to return the length of longest
    // consecutive subsequence after inserting an element
    static int LongestConsSeq(int [] arr, int N)
    {
     
        // Variable to find maximum value of the array
        int maxval = 1;
     
        // Calculating maximum value of the array
        for (int i = 0; i < N; i += 1)
        {
            maxval = Math. max(maxval, arr[i]);
        }
     
        // Declaring the DP table
        int [][] dp = new int[maxval + 1][2];
     
        // Variable to store the maximum length
        int ans = 1;
     
        // Iterating for every value present in the array
        for (int i = 0; i < N; i += 1)
        {
     
            // Recurrence for dp[val][0]
            dp[arr[i]][0] = (1 + dp[arr[i] - 1][0]);
     
            // No value can be inserted before 1,
            // hence the element value should be
            // greater than 1 for this recurrence relation
            if (arr[i] >= 2)
     
                // Recurrence for dp[val][1]
                dp[arr[i]][1] = Math.max(1 + dp[arr[i] - 1][1],
                                    2 + dp[arr[i] - 2][0]);
            else
     
                // Maximum length of consecutive sequence
                // ending at 1 is equal to 1
                dp[arr[i]][1] = 1;
     
            // Update the ans variable with
            // the new maximum length possible
            ans = Math.max(ans, dp[arr[i]][1]);
        }
     
        // Return the ans
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
         
        // Input array
        int [] arr = { 2, 1, 4, 5 };
     
        int N = arr.length;
     
        System.out.println(LongestConsSeq(arr, N));
    }
}
 
// This code is contributed by ihritik


Python3




# Python3 implementation of above approach
 
# Function to return the length of longest
# consecutive subsequence after inserting an element
def LongestConsSeq(arr, N):
 
    # Variable to find maximum value of the array
    maxval = 1
 
    # Calculating maximum value of the array
    for i in range(N):
 
        maxval = max(maxval, arr[i])
     
 
    # Declaring the DP table
    dp=[[ 0 for i in range(2)] for i in range(maxval + 1)]
 
    # Variable to store the maximum length
    ans = 1
 
    # Iterating for every value present in the array
    for i in range(N):
 
        # Recurrence for dp[val][0]
        dp[arr[i]][0] = 1 + dp[arr[i] - 1][0]
 
        # No value can be inserted before 1,
        # hence the element value should be
        # greater than 1 for this recurrence relation
        if (arr[i] >= 2):
 
            # Recurrence for dp[val][1]
            dp[arr[i]][1] = max(1 + dp[arr[i] - 1][1],
                                2 + dp[arr[i] - 2][0])
        else:
 
            # Maximum length of consecutive sequence
            # ending at 1 is equal to 1
            dp[arr[i]][1] = 1
 
        # Update the ans variable with
        # the new maximum length possible
        ans = max(ans, dp[arr[i]][1])
     
 
    # Return the ans
    return ans
 
# Driver code
 
arr=[2, 1, 4, 5]
 
N = len(arr)
 
print(LongestConsSeq(arr, N))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of above approach
using System;
 
class GFG
{
    // Function to return the length of longest
    // consecutive subsequence after inserting an element
    static int LongestConsSeq(int [] arr, int N)
    {
     
        // Variable to find maximum value of the array
        int maxval = 1;
     
        // Calculating maximum value of the array
        for (int i = 0; i < N; i += 1)
        {
     
            maxval =Math.Max(maxval, arr[i]);
        }
     
        // Declaring the DP table
        int [ , ] dp = new int[maxval + 1, 2];
     
        // Variable to store the maximum length
        int ans = 1;
     
        // Iterating for every value present in the array
        for (int i = 0; i < N; i += 1)
        {
     
            // Recurrence for dp[val][0]
            dp[arr[i], 0] = (1 + dp[arr[i] - 1, 0]);
     
            // No value can be inserted before 1,
            // hence the element value should be
            // greater than 1 for this recurrence relation
            if (arr[i] >= 2)
     
                // Recurrence for dp[val][1]
                dp[arr[i], 1] = Math.Max(1 + dp[arr[i] - 1, 1],
                                    2 + dp[arr[i] - 2, 0]);
            else
     
                // Maximum length of consecutive sequence
                // ending at 1 is equal to 1
                dp[arr[i], 1] = 1;
     
            // Update the ans variable with
            // the new maximum length possible
            ans = Math.Max(ans, dp[arr[i], 1]);
        }
     
        // Return the ans
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
         
        // Input array
        int [] arr = new int [] { 2, 1, 4, 5 };
     
        int N = arr.Length;
     
        Console.WriteLine(LongestConsSeq(arr, N));
    }
}
 
// This code is contributed by ihritik


Javascript




<script>
 
// Javascript implementation of above approach
 
// Function to return the length of
// longest consecutive subsequence
// after inserting an element
function LongestConsSeq(arr, N)
{
     
    // Variable to find maximum value of the array
    let maxval = 1;
   
    // Calculating maximum value of the array
    for(let i = 0; i < N; i += 1)
    {
        maxval = Math. max(maxval, arr[i]);
    }
   
    // Declaring the DP table
    let dp = new Array(maxval + 1);
      for(let i = 0; i < dp.length; i++)
    {
        dp[i] = new Array(2);
        for(let j = 0; j < 2; j++)
            dp[i][j] = 0;
    }
     
    // Variable to store the maximum length
    let ans = 1;
   
    // Iterating for every value present in the array
    for(let i = 0; i < N; i += 1)
    {
         
        // Recurrence for dp[val][0]
        dp[arr[i]][0] = (1 + dp[arr[i] - 1][0]);
   
        // No value can be inserted before 1,
        // hence the element value should be
        // greater than 1 for this recurrence relation
        if (arr[i] >= 2)
   
            // Recurrence for dp[val][1]
            dp[arr[i]][1] = Math.max(1 + dp[arr[i] - 1][1],
                                     2 + dp[arr[i] - 2][0]);
        else
   
            // Maximum length of consecutive sequence
            // ending at 1 is equal to 1
            dp[arr[i]][1] = 1;
   
        // Update the ans variable with
        // the new maximum length possible
        ans = Math.max(ans, dp[arr[i]][1]);
    }
   
    // Return the ans
    return ans;
}
 
// Driver code
let arr = [ 2, 1, 4, 5 ];
let N = arr.length;
 
document.write(LongestConsSeq(arr, N));
 
// This code is contributed by unknown2108
 
</script>


Output: 

4

 

Time Complexity: O(N) 
Space Complexity: O(MaxValue) where MaxValue is the maximum value present in the array.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments