Thursday, January 9, 2025
Google search engine
HomeData Modelling & AILexicographically largest array possible from first N natural numbers such that every...

Lexicographically largest array possible from first N natural numbers such that every repetition is present at distance equal to its value from its previous occurrence

Given a positive integer N, the task is to construct the lexicographically largest array of size (2 * N – 1) comprising of first N natural numbers such that each element occurs twice except 1 and the repetition of X is exactly X distance apart in the constructed array.

Examples:

Input: N = 4
Output: 4 2 3 2 4 3 1
Explanation:
For the generated array {4, 2, 3, 2, 4, 3, 1} each duplicate element(say X) is at distance X.

Input: N = 5
Output: 5 3 1 4 3 5 2 4 2

Approach: The problem can be solved using Backtracking. The idea is to generate all possible permutations as per the given condition and print the one that satisfies the given conditions. Follow the steps below to solve the problem:

  • Initialize an array, say ans[], of size (2*N – 1) 0s at every index and a HashMap to store all the elements assigned to the constructed array.
  • Define a function constructedArray(i, N) to generate the resultant array by performing following steps:
    • If the value of i is (2*N – 1), then one of the possible permutations is generated. Therefore, return true.
    • Otherwise, if the value at the current index is already assigned, then recursively call for the next iteration constructArray(i+1, N).
    • Otherwise, perform the following:
      • Place every unvisited number from the range[1, N] starting from N.
      • If the value chosen in the above step doesn’t lead to a possible combination of the array, then remove the current value from the array and try other possible combinations by assigning other elements from the range.
      • If no possible combination is obtained, then return false.
  • After completing the above steps, print the array ans[] as obtained.

Below is the implementation of the above approach:

C++




// C++14 program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
const int N = 4;
  
// Stores the required sequence
vector<int> ans(2 * N - 1, 0);
  
// Stores the visited and unvisited values
set<int> visited;
  
// Function to construct the array
// according to the given conditions
bool constructArray(int i)
{
    
    // Base Case
    if (i == ans.size()) {
        return true;
    }
  
    // If a value is already assigned
    // at current index, then recursively
    // call for the next index
    if (ans[i] != 0)
        return constructArray(i + 1);
  
    else {
  
        // Iterate over the range[N, 1]
        for (int val = N; val >= 1; val--) {
  
            // If the current value is
            // already visited, continue
            if (visited.find(val) != visited.end())
                continue;
  
            // Otherwise, mark this value as
            // visited and set ans[i] = val
            visited.insert(val);
            ans[i] = val;
  
            // If val is equal to 1, then
            // recursively call for the
            // next index
            if (val == 1) {
                bool found = constructArray(i + 1);
  
                // If solution is found,
                // then return true
                if (found)
                    return true;
            }
  
            // For all other values, assign
            // ans[i + val] to val if the
            // i + val < ans.length
            else if (i + val < ans.size()
                     && ans[i + val] == 0) {
                ans[val + i] = val;
  
                // Recursively call for
                // next index to check if
                // solution can be found
                bool found = constructArray(i + 1);
  
                // If solution is found then
                // return true
                if (found)
                    return true;
  
                // BackTracking step
                ans[i + val] = 0;
            }
  
            // BackTracking step
            ans[i] = 0;
            visited.erase(val);
        }
    }
  
    // In all other cases, return false
    return false;
}
  
// Driver code
int main()
{
    
    // Function Call
    constructArray(0);
  
    // Print the resultant array
    for (int X : ans)
        cout << X << " ";
    return 0;
}
  
// This code is contributed by kingash.


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
  
class GFG {
  
    // Stores the required sequence
    static int ans[];
  
    // Stores the visited and unvisited values
    static HashSet<Integer> visited;
  
    // Function to construct the array
    // according to the given conditions
    public static boolean
    constructArray(int i, int N)
    {
  
        // Base Case
        if (i == ans.length) {
            return true;
        }
  
        // If a value is already assigned
        // at current index, then recursively
        // call for the next index
        if (ans[i] != 0)
            return constructArray(i + 1, N);
  
        else {
  
            // Iterate over the range[N, 1]
            for (int val = N; val >= 1; val--) {
  
                // If the current value is
                // already visited, continue
                if (visited.contains(val))
                    continue;
  
                // Otherwise, mark this value as
                // visited and set ans[i] = val
                visited.add(val);
                ans[i] = val;
  
                // If val is equal to 1, then
                // recursively call for the
                // next index
                if (val == 1) {
                    boolean found
                        = constructArray(i + 1, N);
  
                    // If solution is found,
                    // then return true
                    if (found)
                        return true;
                }
  
                // For all other values, assign
                // ans[i + val] to val if the
                // i + val < ans.length
                else if (i + val < ans.length
                         && ans[i + val] == 0) {
                    ans[val + i] = val;
  
                    // Recursively call for
                    // next index to check if
                    // solution can be found
                    boolean found
                        = constructArray(i + 1, N);
  
                    // If solution is found then
                    // return true
                    if (found)
                        return true;
  
                    // BackTracking step
                    ans[i + val] = 0;
                }
  
                // BackTracking step
                ans[i] = 0;
                visited.remove(val);
            }
        }
  
        // In all other cases, return false
        return false;
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int N = 4;
  
        ans = new int[2 * N - 1];
        visited = new HashSet<>();
  
        // Function Call
        constructArray(0, N);
  
        // Print the resultant array
        for (int X : ans)
            System.out.print(X + " ");
    }
}


Python3




# Python3 program for the above approach
  
# Function to construct the array
# according to the given conditions
def constructArray(i, N):
    global ans, visited
  
    # Base Case
    if (i == len(ans)):
        return True
      
    # If a value is already assigned
    # at current index, then recursively
    # call for the next index
    if (ans[i] != 0):
        return constructArray(i + 1, N)
    else:
  
        # Iterate over the range[N, 1]
        for val in range(N, 0, -1):
  
            # If the current value is
            # already visited, continue
            if (val in visited):
                continue
  
            # Otherwise, mark this value as
            # visited and set ans[i] = val
            visited[val] = 1
            ans[i] = val
  
            # If val is equal to 1, then
            # recursively call for the
            # next index
            if (val == 1):
                found = constructArray(i + 1, N)
  
                # If solution is found,
                # then return true
                if (found):
                    return True
  
            # For all other values, assign
            # ans[i + val] to val if the
            # i + val < ans.length
            elif (i + val < len(ans) and ans[i + val] == 0):
                ans[val + i] = val
  
                # Recursively call for
                # next index to check if
                # solution can be found
                found = constructArray(i + 1, N)
  
                # If solution is found then
                # return true
                if (found):
                    return True
  
                # BackTracking step
                ans[i + val] = 0
  
            # BackTracking step
            ans[i] = 0
            del visited[val]
  
    # In all other cases, return false
    return False
  
# Driver Code
if __name__ == '__main__':
    N = 4
    ans = [0]*(2 * N - 1)
    visited = {}
  
    # Function Call
    constructArray(0, N)
  
    # Print the resultant array
    for x in ans:
        print(x,end=" ")
  
        # this code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
  
class GFG{
  
  // Stores the required sequence
  static int[] ans;
  
  // Stores the visited and unvisited values
  static HashSet<int> visited;
  
  // Function to construct the array
  // according to the given conditions
  public static bool
    constructArray(int i, int N)
  {
  
    // Base Case
    if (i == ans.Length) {
      return true;
    }
  
    // If a value is already assigned
    // at current index, then recursively
    // call for the next index
    if (ans[i] != 0)
      return constructArray(i + 1, N);
  
    else {
  
      // Iterate over the range[N, 1]
      for (int val = N; val >= 1; val--) {
  
        // If the current value is
        // already visited, continue
        if (visited.Contains(val))
          continue;
  
        // Otherwise, mark this value as
        // visited and set ans[i] = val
        visited.Add(val);
        ans[i] = val;
  
        // If val is equal to 1, then
        // recursively call for the
        // next index
        if (val == 1) {
          bool found
            = constructArray(i + 1, N);
  
          // If solution is found,
          // then return true
          if (found)
            return true;
        }
  
        // For all other values, assign
        // ans[i + val] to val if the
        // i + val < ans.length
        else if (i + val < ans.Length
                 && ans[i + val] == 0) {
          ans[val + i] = val;
  
          // Recursively call for
          // next index to check if
          // solution can be found
          bool found
            = constructArray(i + 1, N);
  
          // If solution is found then
          // return true
          if (found)
            return true;
  
          // BackTracking step
          ans[i + val] = 0;
        }
  
        // BackTracking step
        ans[i] = 0;
        visited.Remove(val);
      }
    }
  
    // In all other cases, return false
    return false;
  }
  
  // Driver Code
  static public void Main()
  {
    int N = 4;
  
    ans = new int[2 * N - 1];
    visited = new HashSet<int>();
  
    // Function Call
    constructArray(0, N);
  
    // Print the resultant array
    foreach (int X in ans)
      Console.Write(X + " ");
  }
}
  
// This code is contributed by code_hunt.


Javascript




<script>
      // JavaScript program for the above approach
      // Stores the required sequence
      var ans = [];
  
      // Stores the visited and unvisited values
      var visited = [];
  
      // Function to construct the array
      // according to the given conditions
      function constructArray(i, N) {
        // Base Case
        if (i === ans.length) {
          return true;
        }
  
        // If a value is already assigned
        // at current index, then recursively
        // call for the next index
        if (ans[i] !== 0) return constructArray(i + 1, N);
        else {
          // Iterate over the range[N, 1]
          for (var val = N; val >= 1; val--) {
            // If the current value is
            // already visited, continue
            if (visited.includes(val)) continue;
  
            // Otherwise, mark this value as
            // visited and set ans[i] = val
            visited.push(val);
            ans[i] = val;
  
            // If val is equal to 1, then
            // recursively call for the
            // next index
            if (val === 1) {
              var found = constructArray(i + 1, N);
  
              // If solution is found,
              // then return true
              if (found) return true;
            }
  
            // For all other values, assign
            // ans[i + val] to val if the
            // i + val < ans.length
            else if (i + val < ans.length && ans[i + val] === 0) {
              ans[val + i] = val;
  
              // Recursively call for
              // next index to check if
              // solution can be found
              var found = constructArray(i + 1, N);
  
              // If solution is found then
              // return true
              if (found) return true;
  
              // BackTracking step
              ans[i + val] = 0;
            }
  
            // BackTracking step
            ans[i] = 0;
            var index = visited.indexOf(val);
            if (index !== -1) {
              visited.splice(index, 1);
            }
          }
        }
  
        // In all other cases, return false
        return false;
      }
  
      // Driver Code
      var N = 4;
  
      ans = new Array(2 * N - 1).fill(0);
      visited = [];
  
      // Function Call
      constructArray(0, N);
  
      // Print the resultant array
      for (const X of ans) {
        document.write(X + " ");
      }
    </script>


Output: 

4 2 3 2 4 3 1

 

Time Complexity: O(N!)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments