Given a binary tree of N nodes, the task is to print level order traversal in a spiral form. In spiral form, nodes at the first and second level of tree are printed normally (left to right), after which nodes at alternate levels are printed in reverse order. Examples:
Input: N = 3
1 / \ 3 2Output: 1 3 2 Explanation: Nodes at level 0 printed in normal order (1) Nodes at level 1 printed in normal order (3, 2) Hence, spiral order is (1, 3, 2) Input: N = 5
10 / \ 20 30 / \ 40 60Output: 10 20 30 60 40 Explanation: Nodes at level 0 printed in normal order (10) Nodes at level 1 printed in normal order (20, 30) Nodes at level 2 printed in reverse order (60, 40) Hence, spiral order is (10, 20, 30, 60, 40)
Naive Approach: A naive approach for this problem has already been discussed in this article. The basic idea is to use recursion and a flag variable, using which nodes of alternate levels are printed in reverse order and finally spiral form is obtained. Time complexity: O(N2) Auxiliary Space: O(1) Efficient Approach: In this approach, stack and multimap are used. A multimap container in C++ stores the (key, value) pairs in ascending order, sorted according to the key. For every node of a given tree, if we put (level, node) in a multimap, then it will store these nodes sorted according to their level. For example, a given tree is: For this tree, the multimap would look like:
Key(Level) Value(Element) 0 1 1 2 1 3 2 7 2 6 2 5 2 4
Detailed steps of this approach are as follows:
- Traverse the given tree and insert all (level, node) pairs in a multimap and then traverse this multimap.
- If the level is odd, print the nodes in order in which they are present in the multimap.
- If the level is even, push all elements of the current level to a stack then pop all elements from the stack and print them. It gives the reverse order.
Finally, this level order traversal will result in the required spiral form. Below is the implementation of the above approach:
CPP
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std; // Tree Node struct Node { int data; Node* left; Node* right; }; // Utility function to // create a new Tree Node Node* newNode( int val) { Node* temp = new Node; temp->data = val; temp->left = NULL; temp->right = NULL; return temp; } void printSpiral(Node* root); // Function to build tree // from given nodes Node* buildTree(string str) { // Corner Case if (str.length() == 0 || str[0] == 'N' ) return NULL; // Vector to store nodes // after splitting space vector<string> ip; istringstream iss(str); for (string str; iss >> str;) ip.push_back(str); // Creating root of the tree Node* root = newNode(stoi(ip[0])); // Push the root to the queue queue<Node*> queue; queue.push(root); // Start from second element int i = 1; while (!queue.empty() && i < ip.size()) { // Get and remove the // front of the queue Node* currNode = queue.front(); queue.pop(); // Get the current node's // value from the string string currVal = ip[i]; // If left child is not null if (currVal != "N" ) { // Create the left child // for the current node currNode->left = newNode(stoi(currVal)); // Push it to the queue queue.push(currNode->left); } // For the right child i++; if (i >= ip.size()) break ; currVal = ip[i]; // If the right child is not null if (currVal != "N" ) { // Create the right child // for the current node currNode->right = newNode(stoi(currVal)); // Push it to the queue queue.push(currNode->right); } i++; } return root; } // Globally defined multimap multimap< int , int > m; // Function to fill multimap void fillMultiMap(Node* root, int level) { if (root == NULL) return ; else { m.insert(pair< int , int >( level, root->data)); fillMultiMap( root->left, level + 1); fillMultiMap( root->right, level + 1); } } void printSpiral(Node* root) { m.clear(); fillMultiMap(root, 0); stack< int > s; map< int , int >::iterator it = m.begin(); // Traversing multimap while (it != m.end()) { // If level is odd if ((it->first) % 2 != 0) { // Printing same order while (!s.empty()) { cout << s.top() << " " ; s.pop(); } cout << it->second << " " ; } // Otherwise, pushing to stack else { s.push(it->second); } it++; } // Pop from stack // to get reverse order while (!s.empty()) { cout << s.top() << " " ; s.pop(); } return ; } // Driver code int main() { // Tree input string s = "1 2 3 7 6 5 4" ; // Build tree form given nodes Node* root = buildTree(s); // Print spiral form printSpiral(root); return 0; } |
Python3
# Python implementation of # the above approach from typing import List import queue import collections # Tree Node class Node: def __init__( self , val: int = 0 , left: 'Node' = None , right: 'Node' = None ): self .data = val self .left = left self .right = right def print_spiral(root: Node) - > None : m = collections.defaultdict( list ) def fill_multimap(root: Node, level: int ) - > None : if root is None : return m[level].append(root.data) fill_multimap(root.left, level + 1 ) fill_multimap(root.right, level + 1 ) fill_multimap(root, 0 ) # Traversing multimap for level, level_nodes in m.items(): # If level is odd if level % 2 = = 0 : level_nodes.reverse() print ( " " .join( str (x) for x in level_nodes), end = " " ) return # Function to build tree from given nodes def build_tree(nodes: List [ str ]) - > Node: n = len (nodes) # Corner Case if n = = 0 or nodes[ 0 ] = = 'N' : return None # Creating root of the tree root = Node( int (nodes[ 0 ])) # Push the root to the queue q = queue.Queue() q.put(root) # Start from second element i = 1 while not q.empty() and i < n: # Get and remove the # front of the queue curr_node = q.get() # If left child is not null if nodes[i] ! = 'N' : # Create the left child # for the current node curr_node.left = Node( int (nodes[i])) # Push it to the queue q.put(curr_node.left) # For the right child i + = 1 if i > = n: break # If the right child is not null # to get reverse order if nodes[i] ! = 'N' : # Create the right child # for the current node curr_node.right = Node( int (nodes[i])) # Push it to the queue q.put(curr_node.right) i + = 1 return root # Driver code if __name__ = = '__main__' : # Tree input s = "1 2 3 7 6 5 4" .split() # Build tree from given nodes root = build_tree(s) # Print spiral form print_spiral(root) # This code is contributed by Utkarsh |
1 2 3 4 5 6 7
Time complexity: O(NlogN) Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!