Tuesday, December 31, 2024
Google search engine
HomeData Modelling & AILargest subset with composite sum in given Array

Largest subset with composite sum in given Array

Given an array arr[] consisting of n distinct positive integers. Find the length of the largest subset in the given array which sums to a composite number and print the required array(order or printing elements does not matter). 

Note: In case of multiple subsets with this largest size with the composite sum, output any of them.

Examples:

Input: arr[] = {8, 1, 4}, n=3
Output: 2, [8, 4]
Explanation: The required subset can be [8, 1] => 8 + 1 = 9 (composite number). Can also consider, [8, 4] (sum = 12 composite number). Note that [8, 1, 4] cannot be considered as it’s sum is not a composite number. Sum = 8 + 1 + 4 = 13(not a composite number).

Input: arr[] = {6, 4, 2, 3}, n=4
Output: 4, [6, 2, 4, 3]
Explanation: Sum of all elements, = 6 + 4 + 2 + 3 = 15 (composite number), which is the largest subset.

Approach: The given problem can be solved easily by considering the fact that all even numbers sum to an even number (which will always be a composite number except 2) and then adding an odd number to that sum and checking whether the sum is composite or not. Follow the steps below to solve the problem:

  • Create a temp[] vector, storing all the even numbers first and then the odd numbers present in the given array.
  • Create a variable cursum, initialized to zero, to store the current sum of the temp array, variable maxlen = 0, to store the maximum length of composite sum.
  • Iterate over the range [0, n) using the variable i and perform the following tasks:
    • Add the value temp[i] to the variable currsum.
    • If the value currrsum is a composite number and currsum is greater than maxlen then set the value of maxlen as i+1.
  • After performing the above steps, print the value of maxlen as the answer and first maxlen elements from the array temp[] as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the current
// sum is composite or not
bool checkComposite(int n)
{
 
    // 1 and 2 are not composite
    // number
    if (n == 1 || n == 2) {
        return false;
    }
 
    // If the number is divisible
    // by any digit except 2 and itself
    // then it's composite
    for (int i = 2; i < n; i++) {
 
        // If composite
        if (n % i == 0 && i != n) {
            return true;
        }
    }
 
    return false;
}
 
// Utility Function to find largest composite
// subset sum
void largestCompositeSum(int arr[], int n)
{
 
    // Vector to store the elements of
    // arr in order of first even then
    // odd numbers
    vector<int> temp;
 
    // Even numbers pushed first in
    // temp array
    for (int i = 0; i < n; i++) {
 
        // Even check
        if (arr[i] % 2 == 0) {
            temp.push_back(arr[i]);
        }
    }
 
    // Odd numbers pushed
    for (int i = 0; i < n; i++) {
        // Odd check
        if (arr[i] % 2 == 1) {
            temp.push_back(arr[i]);
        }
    }
 
    // To store current sum
    int cursum = 0;
 
    // To store maximum length composite
    // sum
    int maxlen = 0;
 
    for (int i = 0; i < n; i++) {
        cursum += temp[i];
 
        // If composite then update
        // cursum
        if (checkComposite(cursum)
            && cursum > maxlen) {
            maxlen = i + 1;
        }
    }
 
    cout << maxlen << endl;
 
    // Printing the required array
    for (int i = 0; i < maxlen; i++) {
        cout << temp[i] << " ";
    }
 
    return;
}
 
// Driver Code
int main()
{
 
    int n = 3;
    int arr[3] = { 8, 1, 4 };
 
    // Function called
    largestCompositeSum(arr, n);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
  // Function to check if the current
  // sum is composite or not
  static boolean checkComposite(int n)
  {
 
    // 1 and 2 are not composite
    // number
    if (n == 1 || n == 2) {
      return false;
    }
 
    // If the number is divisible
    // by any digit except 2 and itself
    // then it's composite
    for (int i = 2; i < n; i++) {
 
      // If composite
      if (n % i == 0 && i != n) {
        return true;
      }
    }
 
    return false;
  }
 
  // Utility Function to find largest composite
  // subset sum
  static void largestCompositeSum(int arr[], int n)
  {
 
    // Vector to store the elements of
    // arr in order of first even then
    // odd numbers
    Vector<Integer> temp = new Vector<Integer>();
 
    // Even numbers pushed first in
    // temp array
    for (int i = 0; i < n; i++) {
 
      // Even check
      if (arr[i] % 2 == 0) {
        temp.add(arr[i]);
      }
    }
 
    // Odd numbers pushed
    for (int i = 0; i < n; i++) {
      // Odd check
      if (arr[i] % 2 == 1) {
        temp.add(arr[i]);
      }
    }
 
    // To store current sum
    int cursum = 0;
 
    // To store maximum length composite
    // sum
    int maxlen = 0;
 
    for (int i = 0; i < n; i++) {
      cursum += temp.get(i);
 
      // If composite then update
      // cursum
      if (checkComposite(cursum)
          && cursum > maxlen) {
        maxlen = i + 1;
      }
    }
 
    System.out.print(maxlen +"\n");
 
    // Printing the required array
    for (int i = 0; i < maxlen; i++) {
      System.out.print(temp.get(i)+ " ");
    }
 
    return;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
 
    int n = 3;
    int arr[] = { 8, 1, 4 };
 
    // Function called
    largestCompositeSum(arr, n);
 
  }
}
 
// This code is contributed by shikhasingrajput


Python




# Python program for the above approach
 
# Function to check if the current
# sum is composite or not
def checkComposite(n):
 
    # 1 and 2 are not composite
    # number
    if (n == 1 or n == 2):
        return false
 
    # If the number is divisible
    # by any digit except 2 and itself
    # then it's composite
    for i in range(2, n):
 
        # If composite
        if (n % i == 0 and i != n):
            return True
 
    return False
 
# Utility Function to find largest composite
# subset sum
def largestCompositeSum(arr, n):
 
    # Vector to store the elements of
    # arr in order of first even then
    # odd numbers
    temp = []
 
    # Even numbers pushed first in
    # temp array
    for i in range(n):
 
        # Even check
        if (arr[i] % 2 == 0):
            temp.append(arr[i])
     
    # Odd numbers pushed
    for i in range(n):
        # Odd check
        if (arr[i] % 2 == 1):
            temp.append(arr[i])
 
    # To store current sum
    cursum = 0;
 
    # To store maximum length composite
    # sum
    maxlen = 0;
 
    for i in range(n):
        cursum += temp[i]
 
        # If composite then update
        # cursum
        if (checkComposite(cursum)
            and cursum > maxlen):
            maxlen = i + 1
 
    print(maxlen)
     
    l = len(temp) - maxlen
    for i in range(l):
        temp.remove(temp[i + maxlen])
         
    # Printing the required array
    print(*temp)
     
    return
 
# Driver code
n = 3
arr = [8, 1, 4]
 
# Function called
largestCompositeSum(arr, n);
 
# This code is contributed by Samim Hossain Mondal.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
   
    // Function to check if the current
    // sum is composite or not
    static bool checkComposite(int n)
    {
 
        // 1 and 2 are not composite
        // number
        if (n == 1 || n == 2) {
            return false;
        }
 
        // If the number is divisible
        // by any digit except 2 and itself
        // then it's composite
        for (int i = 2; i < n; i++) {
 
            // If composite
            if (n % i == 0 && i != n) {
                return true;
            }
        }
 
        return false;
    }
 
    // Utility Function to find largest composite
    // subset sum
    static void largestCompositeSum(int[] arr, int n)
    {
 
        // Vector to store the elements of
        // arr in order of first even then
        // odd numbers
        List<int> temp = new List<int>();
 
        // Even numbers pushed first in
        // temp array
        for (int i = 0; i < n; i++) {
 
            // Even check
            if (arr[i] % 2 == 0) {
                temp.Add(arr[i]);
            }
        }
 
        // Odd numbers pushed
        for (int i = 0; i < n; i++) {
            // Odd check
            if (arr[i] % 2 == 1) {
                temp.Add(arr[i]);
            }
        }
 
        // To store current sum
        int cursum = 0;
 
        // To store maximum length composite
        // sum
        int maxlen = 0;
 
        for (int i = 0; i < n; i++) {
            cursum += temp[i];
 
            // If composite then update
            // cursum
            if (checkComposite(cursum) && cursum > maxlen) {
                maxlen = i + 1;
            }
        }
 
        Console.WriteLine(maxlen);
 
        // Printing the required array
        for (int i = 0; i < maxlen; i++) {
            Console.Write(temp[i] + " ");
        }
 
        return;
    }
 
    // Driver Code
    public static void Main()
    {
 
        int n = 3;
        int[] arr = { 8, 1, 4 };
 
        // Function called
        largestCompositeSum(arr, n);
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to check if the current
       // sum is composite or not
       function checkComposite(n) {
 
           // 1 and 2 are not composite
           // number
           if (n == 1 || n == 2) {
               return false;
           }
 
           // If the number is divisible
           // by any digit except 2 and itself
           // then it's composite
           for (let i = 2; i < n; i++) {
 
               // If composite
               if (n % i == 0 && i != n) {
                   return true;
               }
           }
 
           return false;
       }
 
       // Utility Function to find largest composite
       // subset sum
       function largestCompositeSum(arr, n) {
 
           // Vector to store the elements of
           // arr in order of first even then
           // odd numbers
           let temp = [];
 
           // Even numbers pushed first in
           // temp array
           for (let i = 0; i < n; i++) {
 
               // Even check
               if (arr[i] % 2 == 0) {
                   temp.push(arr[i]);
               }
           }
 
           // Odd numbers pushed
           for (let i = 0; i < n; i++) {
               // Odd check
               if (arr[i] % 2 == 1) {
                   temp.push(arr[i]);
               }
           }
 
           // To store current sum
           let cursum = 0;
 
           // To store maximum length composite
           // sum
           let maxlen = 0;
 
           for (let i = 0; i < n; i++) {
               cursum += temp[i];
 
               // If composite then update
               // cursum
               if (checkComposite(cursum)
                   && cursum > maxlen) {
                   maxlen = i + 1;
               }
           }
 
           document.write(maxlen + '<br>');
 
           // Printing the required array
           for (let i = 0; i < maxlen; i++) {
               document.write(temp[i] + " ");
           }
 
           return;
       }
 
       // Driver Code
       let n = 3;
       let arr = [8, 1, 4];
 
       // Function called
       largestCompositeSum(arr, n);
 
 // This code is contributed by Potta Lokesh
   </script>


Output: 

2
8 4

 

Time Complexity: O(n2)
Auxiliary Space: O(n), required for temp array.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments