Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIKth largest node among all directly connected nodes to the given node...

Kth largest node among all directly connected nodes to the given node in an undirected graph

Given two arrays u and v, representing a graph such that there is an undirected edge from u[i] to v[i] (0 ? v[i], u[i] < N) and each node has some value val[i] (0 ? i < N). For each node, if the nodes connected directly to it are sorted in descending order according to their values (in case of equal values, sort it according to their indices in ascending order), print the number of the node at kth position. If total nodes are < k then print -1.

Examples: 

Input: u[] = {0, 0, 1}, v[] = {2, 1, 2}, val[] = {2, 4, 3}, k = 2 
Output: 



For 0 node, the nodes directly connected to it are 1 and 2 
having values 4 and 3 respectively, thus node with 2nd largest value is 2. 
For 1 node, the nodes directly connected to it are 0 and 2 
having values 2 and 3 respectively, thus node with 2nd largest value is 0. 
For 2 node, the nodes directly connected to it are 0 and 1 
having values 2 and 4 respectively, thus node with 2nd largest value is 0.

Input: u[] = {0, 2}, v[] = {2, 1}, val[] = {2, 4, 3}, k = 2 
Output: 
-1 
-1 

 

Approach: The idea is to store the nodes directly connected to a node along with their values in a vector and sort them in increasing order, and the kth largest value for a node, having n number of nodes directly connected to it, will be (n – k)th node from last.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print Kth node for each node
void findKthNode(int u[], int v[], int n, int val[], int V, int k)
{
 
    // Vector to store nodes directly
    // connected to ith node along with
    // their values
    vector<pair<int, int> > g[V];
 
    // Add edges to the vector along with
    // the values of the node
    for (int i = 0; i < n; i++) {
        g[u[i]].push_back(make_pair(val[v[i]], v[i]));
        g[v[i]].push_back(make_pair(val[u[i]], u[i]));
    }
 
    // Sort neighbors of every node
    // and find the Kth node
    for (int i = 0; i < V; i++) {
        if (g[i].size() > 0)
            sort(g[i].begin(), g[i].end());
 
        // Get the kth node
        if (k <= g[i].size())
            printf("%d\n", g[i][g[i].size() - k].second);
 
        // If total nodes are < k
        else
            printf("-1\n");
    }
 
    return;
}
 
// Driver code
int main()
{
    int V = 3;
    int val[] = { 2, 4, 3 };
    int u[] = { 0, 0, 1 };
    int v[] = { 2, 1, 2 };
 
    int n = sizeof(u) / sizeof(int);
    int k = 2;
 
    findKthNode(u, v, n, val, V, k);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// pair class
static class pair
{
    int first,second;
    pair(int a,int b)
    {
        first = a;
        second = b;
    }
}
 
// Function to print Kth node for each node
static void findKthNode(int u[], int v[], int n,
                        int val[], int V, int k)
{
 
    // Vector to store nodes directly
    // connected to ith node along with
    // their values
    Vector<Vector<pair >> g = new Vector<Vector<pair>>();
     
    for(int i = 0; i < V; i++)
    g.add(new Vector<pair>());
 
    // Add edges to the Vector along with
    // the values of the node
    for (int i = 0; i < n; i++)
    {
        g.get(u[i]).add(new pair(val[v[i]], v[i]));
        g.get(v[i]).add(new pair(val[u[i]], u[i]));
    }
 
    // Sort neighbors of every node
    // and find the Kth node
    for (int i = 0; i < V; i++)
    {
        if (g.get(i).size() > 0)
            Collections.sort(g.get(i),new Comparator<pair>()
        {
            public int compare(pair p1, pair p2)
            {
                return p1.first - p2.first;
            }
        });
 
        // Get the kth node
        if (k <= g.get(i).size())
            System.out.printf("%d\n", g.get(i).get(g.get(i).size() - k).second);
 
        // If total nodes are < k
        else
            System.out.printf("-1\n");
    }
 
    return;
}
 
// Driver code
public static void main(String args[])
{
    int V = 3;
    int val[] = { 2, 4, 3 };
    int u[] = { 0, 0, 1 };
    int v[] = { 2, 1, 2 };
 
    int n = u.length;
    int k = 2;
 
    findKthNode(u, v, n, val, V, k);
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
 
# Function to print Kth node for each node
def findKthNode(u, v, n, val, V, k):
 
    # Vector to store nodes directly connected
    # to ith node along with their values
    g = [[] for i in range(V)]
 
    # Add edges to the vector along
    # with the values of the node
    for i in range(0, n): 
        g[u[i]].append((val[v[i]], v[i]))
        g[v[i]].append((val[u[i]], u[i]))
 
    # Sort neighbors of every node
    # and find the Kth node
    for i in range(0, V):
        if len(g[i]) > 0:
            g[i].sort()
 
        # Get the kth node
        if k <= len(g[i]):
            print(g[i][-k][1])
 
        # If total nodes are < k
        else:
            print("-1")
      
    return
 
# Driver code
if __name__ == "__main__":
  
    V = 3
    val = [2, 4, 3
    u = [0, 0, 1]
    v = [2, 1, 2
    n, k = len(u), 2
 
    findKthNode(u, v, n, val, V, k)
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections;
using System.Collections.Generic;
  
class GFG
{
  
// pair class
class pair
{
    public int first,second;
    public pair(int a,int b)
    {
        first = a;
        second = b;
    }
}
  
class sortHelper : IComparer
{
   int IComparer.Compare(object a, object b)
   {
      pair first = (pair)a;
      pair second = (pair)b;
         
      return first.first - second.first;
   }
}
  
// Function to print Kth node for each node
static void findKthNode(int []u, int []v, int n,
                        int []val, int V, int k)
{
  
    // Vector to store nodes directly
    // connected to ith node along with
    // their values
    ArrayList g = new ArrayList();    
    for(int i = 0; i < V; i++)
        g.Add(new ArrayList());
  
    // Add edges to the Vector along with
    // the values of the node
    for (int i = 0; i < n; i++)
    {
        ((ArrayList)g[u[i]]).Add(new pair(val[v[i]], v[i]));
        ((ArrayList)g[v[i]]).Add(new pair(val[u[i]], u[i]));
    }
  
    // Sort neighbors of every node
    // and find the Kth node
    for (int i = 0; i < V; i++)
    {
        if (((ArrayList)g[i]).Count > 0)
        {
            ArrayList tmp = (ArrayList)g[i];
            tmp.Sort(new sortHelper());
            g[i] = tmp;           
        }
  
        // Get the kth node
        if (k <= ((ArrayList)g[i]).Count)
            Console.Write(((pair)((ArrayList)g[i])[((ArrayList)g[i]).Count - k]).second+"\n");
  
        // If total nodes are < k
        else
            Console.Write("-1\n");
    }
    return;
}
  
// Driver code
public static void Main(string []args)
{
    int V = 3;
    int []val = { 2, 4, 3 };
    int []u = { 0, 0, 1 };
    int []v = { 2, 1, 2 };
    int n = u.Length;
    int k = 2;
    findKthNode(u, v, n, val, V, k);
}
}
  
// This code is contributed by Pratham76


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to print Kth node for each node
function findKthNode(u, v, n, val, V, k)
{
     
    // Vector to store nodes directly
    // connected to ith node along with
    // their values
    var g = Array.from(Array(V), () => Array());
 
    // Add edges to the vector along with
    // the values of the node
    for(var i = 0; i < n; i++)
    {
        g[u[i]].push([val[v[i]], v[i]]);
        g[v[i]].push([val[u[i]], u[i]]);
    }
 
    // Sort neighbors of every node
    // and find the Kth node
    for(var i = 0; i < V; i++)
    {
        if (g[i].length > 0)
            g[i].sort();
 
        // Get the kth node
        if (k <= g[i].length)
            document.write(
                g[i][g[i].length - k][1] + "<br>");
 
        // If total nodes are < k
        else
            document.write("-1<br>");
    }
    return;
}
 
// Driver code
var V = 3;
var val = [ 2, 4, 3 ];
var u = [ 0, 0, 1 ];
var v = [ 2, 1, 2 ];
var n = u.length;
var k = 2;
 
findKthNode(u, v, n, val, V, k);
 
// This code is contributed by rutvik_56
 
</script>


Output: 

2
0
0

 

Time Complexity: O(N)
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments