Sunday, November 17, 2024
Google search engine
HomeLanguagesIterate over a set in Python

Iterate over a set in Python

In Python, Set is an unordered collection of data type that is iterable, mutable and has no duplicate elements.
There are numerous ways that can be used to iterate over a Set. Some of these ways provide faster time execution as compared to others. Some of these ways include, iterating using for/while loops, comprehensions, iterators and their variations. Let’s see all the different ways we can iterate over a set in Python.
Analysis of each method: 
For explaining the working of each way/technique, time per set(randomly generated set) has been calculated for 5-times to get a rough estimate on how much time every technique takes for iterating over a given set. random.seed(21) has been added to each script to fixate over the random numbers that are generated every time the program is executed. Using constant seed helps us to determine which technique is best for a given particular randomly generated set.

Method #1: Iterating over a set using simple for loop.

Python3




# Creating a set using string
test_set = set("geEks")
 
# Iterating using for loop
for val in test_set:
    print(val)


Output:

k
s
e
g
E

Analysis: 

Python3




# importing libraries
from timeit import default_timer as timer
import itertools
import random
 
# Function under evaluation
def test_func(test_set):
 
    for val in test_set:
        _ = val
 
# Driver function
if __name__ == '__main__':
 
    random.seed(21)
 
    for _ in range(5):
        test_set = set()
 
        # generating a set of random numbers
        for el in range(int(1e6)):
            el = random.random()
            test_set.add(el)
 
        start = timer()
        test_func(test_set)
        end = timer()
 
        print(str(end - start))


Output: 
 

0.06303901899809716
0.06756918999963091
0.06692574200133095
0.067220498000097
0.06748137499744189

Time complexity: O(n), where n is the number of elements in the set generated.

Auxiliary space: O(n), as the set of random numbers is stored in memory.

Method #2: Iterating over a set using enumerated for loop.

Python3




# Creating a set using string
test_set = set("geEks")
 
# Iterating using enumerated for loop
for id,val in enumerate(test_set):
    print(id, val)


Output: 
 

0 E
1 e
2 k
3 g
4 s

Time complexity: O(n).
Auxiliary space: O(n).

Analysis: 

Python3




# importing libraries
from timeit import default_timer as timer
import itertools
import random
 
# Function under evaluation
def test_func(test_set):
 
    for id, val in enumerate(test_set):
        _ = val
 
# Driver function
if __name__ == '__main__':
 
    random.seed(21)
    for _ in range(5):
        test_set = set()
 
        # generating a set of random numbers
        for el in range(int(1e6)):
            el = random.random()
            test_set.add(el)
 
        start = timer()
        test_func(test_set)
        end = timer()
 
        print(str(end - start))


Output
 

0.1306622320007591
0.13657568199778325
0.13797824799985392
0.1386374360008631
0.1424286179972114

Method #3: Iterating over a set as indexed list. 

Python3




# Creating a set using string
test_set = set("geEks")
 
test_list = list(test_set)
 
# Iterating over a set as a indexed list
for id in range(len(test_list)):
        print(test_list[id])


Output: 
 

g
k
E
s
e

Analysis: 

Python3




# importing libraries
from timeit import default_timer as timer
import itertools
import random
 
# Function under evaluation
def test_func(test_set):
 
    test_list = list(test_set)
 
    for id in range(len(test_list)):
        _ = test_list[id]
 
# Driver function
if __name__ == '__main__':
 
    random.seed(21)
    for _ in range(5):
        test_set = set()
 
        # generating a set of random numbers
        for el in range(int(1e6)):
            el = random.random()
            test_set.add(el)
 
        start = timer()
        test_func(test_set)
        end = timer()
 
        print(str(end - start))


Output
 

0.20036015100049553
0.2557020290005312
0.4601482660000329
0.2161413249996258
0.18769703499856405

Method #4: Iterating over a set using comprehension and list constructor/initializer.

Python3




# Creating a set using string
test_set = set("geEks")
 
# Iterating using list-comprehension
com = list(val for val in test_set)
print(*com)


Output: 
 

k s e g E

Analysis: 

Python3




# importing libraries
from timeit import default_timer as timer
import itertools
import random
 
# Function under evaluation
def test_func(test_set):
 
    list(val for val in test_set)
 
# Driver function
if __name__ == '__main__':
 
    random.seed(21)
    for _ in range(5):
        test_set = set()
 
        # generating a set of random numbers
        for el in range(int(1e6)):
            el = random.random()
            test_set.add(el)
 
        start = timer()
        test_func(test_set)
        end = timer()
 
        print(str(end - start))


Output
 

0.1662169310002355
0.1783527520019561
0.21661155100082397
0.19131610199838178
0.19931397800246486

Method #5: Iterating over a set using comprehension. 

Python3




# Creating a set using string
test_set = set("geEks")
 
# Iterating using list-comprehension
com = [print(val) for val in test_set]


Output:

e
E
g
s
k

Analysis: 

Python3




# importing libraries
from timeit import default_timer as timer
import itertools
import random
 
# Function under evaluation
def test_func(test_set):
 
    [val for val in test_set]
 
# Driver function
if __name__ == '__main__':
 
    random.seed(21)
    for _ in range(5):
        test_set = set()
 
        # generating a set of random numbers
        for el in range(int(1e6)):
            el = random.random()
            test_set.add(el)
 
        start = timer()
        test_func(test_set)
        end = timer()
 
        print(str(end - start))


Output
 

0.11386321299869451
0.111869686999853
0.1092844699996931
0.11223735699968529
0.10928539399901638

Method #6: Iterating over a set using map, lambda and list comprehension 

Python3




# importing libraries
from timeit import default_timer as timer
import itertools
import random
 
# Function under evaluation
def test_func(test_set):
 
    [map(lambda val: val, test_set)]
 
# Driver function
if __name__ == '__main__':
 
    random.seed(21)
    for _ in range(5):
        test_set = set()
 
        # generating a set of random numbers
        for el in range(int(1e6)):
            el = random.random()
            test_set.add(el)
 
        start = timer()
        test_func(test_set)
        end = timer()
 
        print(str(end - start))


Output
 

1.0756000847322866e-05
1.310199877480045e-05
1.269100175704807e-05
1.1588999768719077e-05
1.2522999895736575e-05

Method #7: Iterating over a set using iterator. 

Python3




# importing libraries
from timeit import default_timer as timer
import itertools
import random
 
# Function under evaluation
def test_func(test_set):
 
    for val in iter(test_set):
        _ = val
 
# Driver function
if __name__ == '__main__':
 
    random.seed(21)
    for _ in range(5):
        test_set = set()
 
        # generating a set of random numbers
        for el in range(int(1e6)):
            el = random.random()
            test_set.add(el)
 
        start = timer()
        test_func(test_set)
        end = timer()
 
        print(str(end - start))


Output
 

0.0676155920009478
0.07111633900058223
0.06994135700006154
0.0732101009998587
0.08668379899972933

Method #8: Iterating over a set using iterator and while loop.

Python3




# Creating a set using string
test_set = set("geEks")
 
iter_gen = iter(test_set)
 
while True:
    try:
        # get the next item
        print(next(iter_gen))
         
        ''' do something with element '''
         
    except StopIteration:
        # if StopIteration is raised,
        # break from loop
        break


Output: 

E
s
e
k
g

Analysis: 

Python3




# importing libraries
from timeit import default_timer as timer
import itertools
import random
 
# Function under evaluation
def test_func(test_set):
 
    iter_gen = iter(test_set)
    while True:
        try:
            # get the next item
            next(iter_gen)
            # do something with element
        except StopIteration:
            # if StopIteration is raised, break from loop
            break
 
# Driver function
if __name__ == '__main__':
 
    random.seed(21)
    for _ in range(5):
        test_set = set()
 
        # generating a set of random numbers
        for el in range(int(1e6)):
            el = random.random()
            test_set.add(el)
 
        start = timer()
        test_func(test_set)
        end = timer()
 
        print(str(end - start))


Output: 

0.2136418699992646
0.1952157889973023
0.4234208280031453
0.255840524998348
0.24712910099697183

Conclusion: 
Among all the looping techniques, simple for loop iteration and looping over iterators works best, while comparing all the techniques, using map with lambda over set or iterator of set works best giving a performance of a million set iterations under 10 milliseconds. It is quite noticeable that above examples only have single access of set components per iteration, whereas if we increase the number of times a set component is accessed per iteration, it may change the time taken per iteration.
Note: Values mentioned above in the example output are bound to vary. The reason behind the variation of time consumption is machine dependency of processing power of individual’s system processor.

RELATED ARTICLES

Most Popular

Recent Comments