Monday, January 13, 2025
Google search engine
HomeData Modelling & AIInverting the Move to Front Transform

Inverting the Move to Front Transform

Prerequisite:Move To Front Data Transform Algorithm 

The main idea behind inverse of MTF Transform: 

  1. To compute inverse of MTF Transform is to undo the MTF Transform and recover the original string. We have with us “input_arr” which is the MTF transform and “n” which is the number of elements in “input_arr”
  2. Our task is to maintain an ordered list of characters (a to z, in our example) and read in “ith”element from “input_arr” one at a time. 
  3. Then, taking that element as index j, print “jth” character in the list.
Illustration for "[15 1 14 1 14 1]"
List initially contains English alphabets in order.
We move characters at indexes depicted by input 
to front of the list one by one.

input arr chars   output str  list
15                p           abcdefghijklmnopqrstuvwxyz
1                 pa          pabcdefghijklmnoqrstuvwxyz
14                pan         apbcdefghijklmnoqrstuvwxyz
1                 pana        napbcdefghijklmoqrstuvwxyz
14                panam       anpbcdefghijklmoqrstuvwxyz
1                 panama      manpbcdefghijkloqrstuvwxyz

Examples:

Input : arr[] = {15, 1, 14, 1, 14, 1}
Output : panama

Input : arr[] = {6, 5, 0, 10, 18, 8, 15, 18, 
                6, 6, 0, 6, 6};
Output : neveropen

Following is the code for idea explained above: 

C++




// C++ program to find Inverse of Move to Front
// Transform of a given string
#include<bits/stdc++.h>
using namespace std;
 
// Takes index of printed character as argument
// to bring that character to the front of the list
void moveToFront(int index, string &list)
{
    char record[27];
    int i = 0;
    for(; i < list.size(); i++) record[i] = list[i];
 
    // Characters pushed one position right
    // in the list up until index
    i = 1;
    for(; i <= index; i++) list[i] = record[i-1];
         
 
    // Character at index stored at 0th position
    list[0] = record[index];
}
 
// Move to Front Decoding
void mtfDecode(vector<int> arr, int n)
{
    // Maintains an ordered list of legal symbols
    string list = "abcdefghijklmnopqrstuvwxyz";
 
    int i;
    cout << "\nInverse of Move to Front Transform: ";
    for (i = 0; i < n; i++)
    {
       
        // Printing characters of Inverse MTF as output
        cout << list[arr[i]];
 
        // Moves the printed character to the front
        // of the list
        moveToFront(arr[i], list);
    }
}
 
// Driver program to test functions above
int main()
{
    // MTF transform and number of elements in it.
    vector<int> arr = {15, 1, 14, 1, 14, 1};
    int n = arr.size();
 
    // Computes Inverse of Move to Front transform
    // of given text
    mtfDecode(arr, n);
 
    return 0;
}
 
// The code is contributed by Nidhi goel.


C




// C program to find Inverse of Move to Front
// Transform of a given string
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
 
// Takes index of printed character as argument
// to bring that character to the front of the list
void moveToFront(int index, char *list)
{
    char record[27];
    strcpy(record, list);
 
    // Characters pushed one position right
    // in the list up until index
    strncpy(list+1, record, index);
 
    // Character at index stored at 0th position
    list[0] = record[index];
}
 
// Move to Front Decoding
void mtfDecode(int arr[], int n)
{
    // Maintains an ordered list of legal symbols
    char list[] = "abcdefghijklmnopqrstuvwxyz";
 
    int i;
    printf("\nInverse of Move to Front Transform: ");
    for (i = 0; i < n; i++)
    {
        // Printing characters of Inverse MTF as output
        printf("%c", list[arr[i]]);
 
        // Moves the printed character to the front
        // of the list
        moveToFront(arr[i], list);
    }
}
 
// Driver program to test functions above
int main()
{
    // MTF transform and number of elements in it.
    int arr[] = {15, 1, 14, 1, 14, 1};
    int n = sizeof(arr)/sizeof(arr[0]);
 
    // Computes Inverse of Move to Front transform
    // of given text
    mtfDecode(arr, n);
 
    return 0;
}


Java




import java.util.*;
 
class Main {
    // Takes index of printed character as argument
    // to bring that character to the front of the list
    static void moveToFront(int index, StringBuilder list) {
        char[] record = new char[list.length()];
        list.getChars(0, list.length(), record, 0);
 
        // Characters pushed one position right
        // in the list up until index
        for (int i = index; i > 0; i--) {
            list.setCharAt(i, record[i - 1]);
        }
 
        // Character at index stored at 0th position
        list.setCharAt(0, record[index]);
    }
 
    // Move to Front Decoding
    static void mtfDecode(List<Integer> arr, int n) {
        // Maintains an ordered list of legal symbols
        StringBuilder list = new StringBuilder("abcdefghijklmnopqrstuvwxyz");
 
        System.out.print("\nInverse of Move to Front Transform: ");
        for (int i = 0; i < n; i++) {
 
            // Printing characters of Inverse MTF as output
            System.out.print(list.charAt(arr.get(i)));
 
            // Moves the printed character to the front
            // of the list
            moveToFront(arr.get(i), list);
        }
    }
 
    // Driver program to test functions above
    public static void main(String[] args) {
        // MTF transform and number of elements in it.
        List<Integer> arr = Arrays.asList(15, 1, 14, 1, 14, 1);
        int n = arr.size();
 
        // Computes Inverse of Move to Front transform
        // of given text
        mtfDecode(arr, n);
    }
}


Python3




# Python3 program to find Inverse of Move to Front
# Transform of a given string
 
# Takes index of printed character as argument
# to bring that character to the front of the list
def move_to_front(index, lst):
   
      # Characters pushed one position right
    # in the list up until index
    record = lst.copy()
    lst[1:index+1] = record[:index]
     
    # Character at index stored at 0th position
    lst[0] = record[index]
 
# Move to Front Decoding
def mtf_decode(arr):
    lst = list("abcdefghijklmnopqrstuvwxyz")
    result = []
    for i in arr:
        result.append(lst[i])
         
        # Moves the printed character to the front
        # of the list
        move_to_front(i, lst)
    return ''.join(result)
 
# Driver program to test functions above
arr = [15, 1, 14, 1, 14, 1]
print("Inverse of Move to Front Transform:", mtf_decode(arr))
 
# This code is contributed by Prince


C#




using System;
using System.Collections.Generic;
using System.Text;
 
class MainClass {
    // Takes index of printed character as argument
    // to bring that character to the front of the list
    static void moveToFront(int index, StringBuilder list) {
        char[] record = list.ToString().ToCharArray();
 
        // Characters pushed one position right
        // in the list up until index
        for (int i = index; i > 0; i--) {
            list[i] = record[i - 1];
        }
 
        // Character at index stored at 0th position
        list[0] = record[index];
    }
 
    // Move to Front Decoding
    static void mtfDecode(List<int> arr, int n) {
        // Maintains an ordered list of legal symbols
        StringBuilder list = new StringBuilder("abcdefghijklmnopqrstuvwxyz");
 
        Console.Write("\nInverse of Move to Front Transform: ");
        for (int i = 0; i < n; i++) {
 
            // Printing characters of Inverse MTF as output
            Console.Write(list[arr[i]]);
 
            // Moves the printed character to the front
            // of the list
            moveToFront(arr[i], list);
        }
    }
 
    // Driver program to test functions above
    public static void Main(string[] args) {
        // MTF transform and number of elements in it.
        List<int> arr = new List<int> {15, 1, 14, 1, 14, 1};
        int n = arr.Count;
 
        // Computes Inverse of Move to Front transform
        // of given text
        mtfDecode(arr, n);
    }
}


Javascript




// JavaScript program for the above approach
 
function move_to_front(index, lst) {
  // Characters pushed one position right
  // in the list up until index
  const record = lst.slice();
  lst.splice(1, index, ...record.slice(0, index));
 
  // Character at index stored at 0th position
  lst[0] = record[index];
}
 
function mtf_decode(arr) {
  const lst = "abcdefghijklmnopqrstuvwxyz".split("");
  const result = [];
  for (let i = 0; i < arr.length; i++) {
    const charIndex = arr[i];
    result.push(lst[charIndex]);
 
    // Moves the printed character to the front
    // of the list
    move_to_front(charIndex, lst);
  }
  return result.join("");
}
 
const arr = [15, 1, 14, 1, 14, 1];
console.log("Inverse of Move to Front Transform:", mtf_decode(arr));
 
 
// This code is contributed by adityashatmfh


Output

Inverse of Move to Front Transform: panama

Time Complexity: O(n^2) 
Auxiliary Space: O(n), size of the given array.

Exercise: Implement MTF encoding and decoding together in one program and check if the original message is recovered.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments