Given an array that represents the y coordinates of a set of points on a coordinate plane, where (i, arr[i]) represent a single point. Find whether it is possible to draw a pair of parallel lines that includes all the coordinate points given and also both lines must contain a point. Print 1 for possible and 0 if not possible.
Examples:Â
Input: arr[] = {1, 4, 3, 6, 5};Â
Output: 1Â
(1, 1), (3, 3) and (5, 5) lie on one lineÂ
where as (2, 4) and (4, 6) lie on another line.
Input: arr[] = {2, 4, 3, 6, 5};Â
Output: 0Â
Minimum 3 lines needed to cover all points.Â
Approach: The slope of a line made by points (x1, y1) and (x2, y2) is y2-y2/x2-x1. As the given array consists of coordinates of points as (i, arr[i]). So, (arr[2]-arr[1]) / (2-1) is slope of line made by (1, arr[i]) and (2, arr[2]). Take into consideration only three points say P0(0, arr[0]), P1(1, arr[1]), and P2(2, arr[2]) as the requirement is of only two parallel lines this is mandatory that two of these three points lie on the same line. So, three possible cases are:Â
Â
- P0 and P1 are on the same line hence their slope will be arr[1]-arr[0]
- P1 and P2 are on the same line hence their slope will be arr[2]-arr[1]
- P0 and P2 are on the same line hence their slope will be arr[2]-arr[0]/2
Take one out of three cases, say P0 and P1 lie on the same line, in this case, let m=arr[1]-arr[0] be our slope. For the general point in the array (i, arr[i]) the equation of the line is:Â Â
=> (y-y1) = m (x-x1) => y-arr[i] = m (x-i) => y-mx = arr[i] - mi
Now, as y-mx=c is general equation of straight line here c = arr[i] -mi. Now, if the solution will be possible for a given array then we must have exactly two intercepts (c).Â
So, if two distinct intercepts exist for any of the above-mentioned three possible, the required solution is possible and print 1 else 0.
Â
Below is the implementation of the above approach:Â Â
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; Â
// Find if slope is good with only two intercept bool isSlopeGood( double slope, int arr[], int n) { Â Â Â Â set< double > setOfLines; Â Â Â Â for ( int i = 0; i < n; i++) Â Â Â Â Â Â Â Â setOfLines.insert(arr[i] - slope * (i+1)); Â
    // if set of lines have only two distinct intercept     return setOfLines.size() == 2; } Â
// Function to check if required solution exist bool checkForParallel( int arr[], int n) {     // check the result by processing     // the slope by starting three points     bool slope1 = isSlopeGood(arr[1] - arr[0], arr, n);     bool slope2 = isSlopeGood(arr[2] - arr[1], arr, n);     bool slope3 = isSlopeGood((arr[2] - arr[0]) / 2.0, arr, n); Â
    return (slope1 || slope2 || slope3); } Â
// Driver code int main() { Â Â Â Â int arr[] = {1, 6, 3, 8, 5 }; Â Â Â Â int n = sizeof (arr) / sizeof (arr[0]); Â Â Â Â cout << ( int )checkForParallel(arr, n); Â
    return 0; } |
Java
// Java implementation of the above approach import java.util.*; Â
class GfG { Â
// Find if slope is good // with only two intercept static boolean isSlopeGood( double slope, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â int arr[], int n) { Â Â Â Â Set<Double> setOfLines = new HashSet<Double> (); Â Â Â Â for ( int i = 0 ; i < n; i++) Â Â Â Â Â Â Â Â setOfLines.add(arr[i] - slope * (i)); Â
    // if set of lines have only two distinct intercept     return setOfLines.size() == 2 ; } Â
// Function to check if required solution exist static boolean checkForParallel( int arr[], int n) {     // check the result by processing     // the slope by starting three points     boolean slope1 = isSlopeGood(arr[ 1 ] - arr[ 0 ], arr, n);     boolean slope2 = isSlopeGood(arr[ 2 ] - arr[ 1 ], arr, n);     boolean slope3 = isSlopeGood((arr[ 2 ] - arr[ 0 ]) / 2 , arr, n); Â
    return (slope1 == true || slope2 == true || slope3 == true ); } Â
// Driver code public static void main(String[] args) {     int arr[] = { 1 , 6 , 3 , 8 , 5 };     int n = arr.length;     if (checkForParallel(arr, n) == true )     System.out.println( "1" );     else     System.out.println( "0" ); } } Â
// This code is contributed by Prerna Saini. |
Python3
# Python3 implementation of the # above approach Â
# Find if slope is good with only # two intercept def isSlopeGood(slope, arr, n): Â
    setOfLines = dict ()     for i in range (n):         setOfLines[arr[i] - slope * (i)] = 1 Â
    # if set of lines have only     # two distinct intercept     return len (setOfLines) = = 2 Â
# Function to check if required solution exist def checkForParallel(arr, n):          # check the result by processing     # the slope by starting three points     slope1 = isSlopeGood(arr[ 1 ] - arr[ 0 ], arr, n)     slope2 = isSlopeGood(arr[ 2 ] - arr[ 1 ], arr, n)     slope3 = isSlopeGood((arr[ 2 ] - arr[ 0 ]) / / 2 , arr, n) Â
    return (slope1 or slope2 or slope3) Â
# Driver code arr = [ 1 , 6 , 3 , 8 , 5 ] n = len (arr) if checkForParallel(arr, n):     print ( 1 ) else :     print ( 0 )      # This code is contributed by Mohit Kumar   |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; Â
class GfG { Â
// Find if slope is good // with only two intercept static bool isSlopeGood( double slope, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â int []arr, int n) { Â
    HashSet<Double> setOfLines = new HashSet<Double> ();     for ( int i = 0; i < n; i++)         setOfLines.Add(arr[i] - slope * (i)); Â
    // if set of lines have only two distinct intercept     return setOfLines.Count == 2; } Â
// Function to check if required solution exist static bool checkForParallel( int []arr, int n) {     // check the result by processing     // the slope by starting three points     bool slope1 = isSlopeGood(arr[1] - arr[0], arr, n);     bool slope2 = isSlopeGood(arr[2] - arr[1], arr, n);     bool slope3 = isSlopeGood((arr[2] - arr[0]) / 2, arr, n); Â
    return (slope1 == true || slope2 == true || slope3 == true ); } Â
// Driver code public static void Main() {     int []arr = { 1, 6, 3, 8, 5 };     int n = arr.Length;     if (checkForParallel(arr, n) == true )         Console.WriteLine( "1" );     else         Console.WriteLine( "0" ); } } Â
// This code is contributed by Ryuga. |
PHP
<?php // PHP implementation of the above approach Â
// Find if slope is good with only // two intercept function isSlopeGood( $slope , $arr , $n ) {     $setOfLines = array_fill (0, max( $arr ) * $n , 0);     for ( $i = 0; $i < $n ; $i ++)         $setOfLines [ $arr [ $i ] - $slope * $i ] = 1;     $setOfLines = array_unique ( $setOfLines );          // if set of lines have only two     // distinct intercept     return ( count ( $setOfLines ) == 2); } Â
// Function to check if required // solution exist function checkForParallel( $arr , $n ) {     // check the result by processing     // the slope by starting three points     $slope1 = isSlopeGood( $arr [1] - $arr [0],                                     $arr , $n );     $slope2 = isSlopeGood( $arr [2] - $arr [1],                                     $arr , $n );     $slope3 = isSlopeGood((int)(( $arr [2] -                                  $arr [0]) / 2),                                  $arr , $n ); Â
    return ( $slope1 || $slope2 || $slope3 ); } Â
// Driver code $arr = array ( 1, 6, 3, 8, 5 ); $n = count ( $arr ); echo (int)checkForParallel( $arr , $n ) . "\n" ; Â
// This code is contributed by mits ?> |
Javascript
<script> Â
// Javascript implementation of the above approach Â
// Find if slope is good with only two intercept function isSlopeGood(slope, arr, n) { Â Â Â Â var setOfLines = new Set(); Â Â Â Â for ( var i = 0; i < n; i++) Â Â Â Â Â Â Â Â setOfLines.add(arr[i] - slope * (i)); Â
    // if set of lines have only two distinct intercept     return setOfLines.size == 2; } Â
// Function to check if required solution exist function checkForParallel(arr, n) {     // check the result by processing     // the slope by starting three points     var slope1 = isSlopeGood(arr[1] - arr[0], arr, n);     var slope2 = isSlopeGood(arr[2] - arr[1], arr, n);     var slope3 = isSlopeGood(parseInt((arr[2] - arr[0]) / 2), arr, n); Â
    if (slope1 || slope2 || slope3)     {         return 1;     }     return 0; } Â
// Driver code var arr = [ 1, 6, 3, 8, 5 ]; var n = arr.length; document.write( checkForParallel(arr, n)); Â
</script> |
1
Â
Time Complexity: O(N), since there runs a loop from 0 to (n – 1).
Auxiliary Space: O(N), since N extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!