Thursday, January 16, 2025
Google search engine
HomeData Modelling & AIFind the time when last car reaches end of track in given...

Find the time when last car reaches end of track in given race

Given a car race track of length N units. where each car moves with a speed of 1 unit per second. Given two arrays left[] and right[] denoting the positions of the cars moving towards left and right respectively. When two cars running in two opposite directions meet at some point on the track, they change their directions and continue moving again in reversed directions. Return the time when the last car reaches either of the ends of the track.

Note: No two cars are on the same spot initially.

Examples:

Input: N = 4, left = {4, 3}, right = {0, 1}
Output: 4
Explanation:
The car at index 0 is named A and going to the right.
The car at index 1 is named B and going to the right.
The car at index 3 is named C and going to the left.
The car at index 4 is named D and going to the left.
The last moment when a car was on the race track is t = 4 seconds. 
See the image given – 

Input: N = 7, left = {0, 1, 2, 3, 4, 5, 6, 7}, right = { }
Output: 7
Explanation: All cars are going to the left, the car at index 7 needs 7 seconds to reach the end of track.

Input: N = 10, left = {3, 5}, right = {1}
Output: 9
Explanation:
Say at t = 0, carA = 1 (->), carB = 3 (<-), carC = 5 (<-)
At t = 1: carA and carB collides at 2 and change directions. 
So, carA = 2 (<-), carB = 2 (->), carC = 4 (<-)
At t = 2, carB and carC collides at 3 and change direction.
So, carA = 1 (<-), carB = 3 (<-), carC = 3 (->)
At t = 3, carA reaches 0.
So, carA = 0 (<-), carB = 2 (<-), carC = 4 (->)
At t = 4, only carB and carC are running on track in opposite directions.
So, carB = 1 (<-), carC = 5 (->)
At t = 5, carB reaches at 0.
So, carB = 0 (<-), carC = 5 (->)
carC alone running towards right end (index 9).
So, at t = 9 carC reaches at 9.

 

Approach: The problem can be solved based on the following observation. 
Since the cars on collisions change directions immediately and start moving in the opposite direction, it can be considered as the colliding cars are just swapping their position and moving in the same direction afterward. So the required time is the maximum time any car takes to reach from the starting position to the end if it keeps on moving in the same direction.

Below is the implementation of the above approach.

C++




// Program for above approach.
#include <bits/stdc++.h>
using namespace std;
 
// Function to get the maximum time
int getLastCarMoment(int N,
                     vector<int>& left,
                     vector<int>& right)
{
    int ans = 0;
    for (auto it : left)
        ans = max(ans, it);
 
    for (auto it : right)
        ans = max(ans, N - it);
 
    return ans;
}
 
// Driver code
int main()
{
    int N = 10;
    vector<int> left{ 3, 5 }, right{ 1 };
 
    // Function call
    int res = getLastCarMoment(N, left, right);
    cout << res;
    return 0;
}


Java




// Java Program for above approach.
class GFG {
 
    // Function to get the maximum time
    static int getLastCarMoment(int N,
            int[] left,
            int[] right) {
        int ans = 0;
        for (int it : left)
            ans = Math.max(ans, it);
 
        for (int it : right)
            ans = Math.max(ans, N - it);
 
        return ans;
    }
 
    // Driver code
    public static void main(String args[]) {
        int N = 10;
        int[] left = { 3, 5 };
        int[] right = { 1 };
 
        // Function call
        int res = getLastCarMoment(N, left, right);
        System.out.println(res);
    }
}
 
// This code is contributed by Saurabh jaiswal


Python3




# Program for above approach.
 
# Function to get the maximum time
def getLastCarMoment(N,
                     left,
                     right):
 
    ans = 0
    for it in left:
        ans = max(ans, it)
 
    for it in right:
        ans = max(ans, N - it)
 
    return ans
 
# Driver code
if __name__ == "__main__":
 
    N = 10
    left = [3, 5]
    right = [1]
 
    # Function call
    res = getLastCarMoment(N, left, right)
    print(res)
 
    # This code is contributed by ukasp.


C#




// Program for above approach.
using System;
class GFG
{
 
  // Function to get the maximum time
  static int getLastCarMoment(int N,
                              int []left,
                              int []right)
  {
    int ans = 0;
    foreach (int it in left)
      ans = Math.Max(ans, it);
 
    foreach (int it in right)
      ans = Math.Max(ans, N - it);
 
    return ans;
  }
 
  // Driver code
  public static void Main()
  {
    int N = 10;
    int []left = { 3, 5 };
    int []right = { 1 };
 
    // Function call
    int res = getLastCarMoment(N, left, right);
    Console.Write(res);
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to get the maximum time
       function getLastCarMoment(N,
           left,
           right) {
           let ans = 0;
           for (let it of left)
               ans = Math.max(ans, it);
 
           for (let it of right)
               ans = Math.max(ans, N - it);
 
           return ans;
       }
 
       // Driver code
       let N = 10;
       let left = [3, 5], right = [1];
 
       // Function call
       let res = getLastCarMoment(N, left, right);
       document.write(res)
 
      // This code is contributed by Potta Lokesh
   </script>


 
 

Output

9

 

Time Complexity: O(M) where M is the maximum size of the two arrays.
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments