Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind the previous fibonacci number

Find the previous fibonacci number

Given a Fibonacci number N, the task is to find the previous Fibonacci number.
Examples: 
 

Input: N = 8 
Output:
5 is the previous fibonacci number before 8.
Input: N = 5 
Output:
 

 

Approach: The ratio of two adjacent numbers in the Fibonacci series rapidly approaches ((1 + sqrt(5)) / 2). So if N is divided by ((1 + sqrt(5)) / 2) and then rounded, the resultant number will be the previous Fibonacci number. 
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to return the previous
// fibonacci number
int previousFibonacci(int n)
{
    double a = n / ((1 + sqrt(5)) / 2.0);
    return round(a);
}
 
// Driver code
int main()
{
    int n = 8;
    cout << (previousFibonacci(n));
}
 
// This code is contributed by Mohit Kumar


Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
         
// Function to return the previous
// fibonacci number
static int previousFibonacci(int n)
{
    double a = n / ((1 + Math.sqrt(5)) / 2.0);
    return (int)Math.round(a);
}
 
// Driver code
public static void main (String[] args)
{
    int n = 8;
    System.out.println(previousFibonacci(n));
}
}
 
// This code is contributed by ajit.


Python3




# Python3 implementation of the approach
from math import *
 
# Function to return the previous
# fibonacci number
def previousFibonacci(n):
    a = n/((1 + sqrt(5))/2.0)
    return round(a)
 
# Driver code
n = 8
print(previousFibonacci(n))


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the previous
// fibonacci number
static int previousFibonacci(int n)
{
    double a = n / ((1 + Math.Sqrt(5)) / 2.0);
    return (int)Math.Round(a);
}
 
// Driver code
public static void Main()
{
    int n = 8;
    Console.Write(previousFibonacci(n));
}
}
 
// This code is contributed by Akanksha_Rai


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the previous
// fibonacci number
function previousFibonacci(n)
{
    var a = n / ((1 + Math.sqrt(5)) / 2);
    return Math.round(a);
}
 
// Driver code
var n = 8;
document.write(previousFibonacci(n));
 
// This code is contributed by rutvik_56.
</script>


Output: 

5

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments