Given two integers N and M, the task is count the total words of M character length formed by the given N distinct characters such that the words have at least one character repeated more than once.
Examples:
Input: N = 3, M = 2
Output: 3
Suppose the characters are {‘a’, ‘b’, ‘c’}
All 2 length words that can be formed with these characters
are “aa”, “ab”, “ac”, “ba”, “bb”, “bc”, “ca”, “cb” and “cc”.
Out of these words only “aa”, “bb” and “cc” have
at least one character repeated more than once.Input: N = 10, M = 5
Output: 69760
Approach:
Total number of M character words possible from N characters, total = NM.
Total number of M character words possible from N characters where no character repeats itself, noRepeat = NPM.
So, total words where at least a single character appear more than once is total – noRepeat i.e. NM – NPM.
Below is the implementation of the above approach:
C++
// C++ implementation for the above approach #include <math.h> #include <iostream> using namespace std; // Function to return the // factorial of a number int fact( int n) { if (n <= 1) return 1; return n * fact(n - 1); } // Function to return the value of nPr int nPr( int n, int r) { return fact(n) / fact(n - r); } // Function to return the total number of // M length words which have at least a // single character repeated more than once int countWords( int N, int M) { return pow (N, M) - nPr(N, M); } // Driver code int main() { int N = 10, M = 5; cout << (countWords(N, M)); return 0; } // This code is contributed by jit_t |
Java
// Java implementation of the approach class GFG { // Function to return the // factorial of a number static int fact( int n) { if (n <= 1 ) return 1 ; return n * fact(n - 1 ); } // Function to return the value of nPr static int nPr( int n, int r) { return fact(n) / fact(n - r); } // Function to return the total number of // M length words which have at least a // single character repeated more than once static int countWords( int N, int M) { return ( int )Math.pow(N, M) - nPr(N, M); } // Driver code public static void main(String[] args) { int N = 10 , M = 5 ; System.out.print(countWords(N, M)); } } |
Python3
# Python3 implementation for the above approach # Function to return the # factorial of a number def fact(n): if (n < = 1 ): return 1 ; return n * fact(n - 1 ); # Function to return the value of nPr def nPr(n, r): return fact(n) / / fact(n - r); # Function to return the total number of # M length words which have at least a # single character repeated more than once def countWords(N, M): return pow (N, M) - nPr(N, M); # Driver code N = 10 ; M = 5 ; print (countWords(N, M)); # This code is contributed by Code_Mech |
C#
// C# implementation of the approach using System; class GFG { // Function to return the // factorial of a number static int fact( int n) { if (n <= 1) return 1; return n * fact(n - 1); } // Function to return the value of nPr static int nPr( int n, int r) { return fact(n) / fact(n - r); } // Function to return the total number of // M length words which have at least a // single character repeated more than once static int countWords( int N, int M) { return ( int )Math.Pow(N, M) - nPr(N, M); } // Driver code static public void Main () { int N = 10, M = 5; Console.Write(countWords(N, M)); } } // This code is contributed by ajit. |
Javascript
// javascript implementation of the approach // Function to return the // factorial of a number function fact(n) { if (n <= 1) return 1; return n * fact(n - 1); } // Function to return the value of nPr function nPr( n, r) { return fact(n) / fact(n - r); } // Function to return the total number of // M length words which have at least a // single character repeated more than once function countWords( N, M) { return Math.pow(N, M) - nPr(N, M); } // Driver code var N = 10 ; var M = 5; document.write(countWords(N, M)); // This code is contributed by bunnyram19. |
69760
Time Complexity: O(n)
Auxiliary Space: O(N), for recursive stack space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!