Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIFind string with a single differing position in the given n strings

Find string with a single differing position in the given n strings

Given n strings and q queries, for each query, a string array s[] is provided. The task is to determine, for each query, whether there exists a string among the n given strings that differs from s[] in exactly one position.

Note: Each string consists only of letters ‘a’, ‘b’, ‘c’.

Example:

Input: n = 2, q = 3, s[] = {“aaaaa”, “acacaca”}, queries[] = {“aabaa”, “ccacacc”, “caaac”}
Output:
YES
NO
NO

Input: n = 1, q = 5, s[] = {“acbacbacb”}, queries[] = {“cbacbacb”, “acbacbac”, “aacbacbacb”, “acbacbacbb”, “acbaabacb”}
Output:
NO
NO
NO
NO
YES

Approach:

The idea is to use a hash function to convert each string into a unique integer (hash value), which is then stored in a set for quick lookup. The hash function used here is a simple polynomial rolling hash function, where each character of the string is multiplied by a base raised to the power of its position in the string, and these products are then added together modulo a large prime number.

When a query string is received, then calculates its hash value and then checks if there exists a hash value in the set that can be obtained by changing exactly one character in the query string. This is done by iterating over each character in the query string, changing it to ‘a’, ‘b’, or ‘c’ (if it’s not already that character), recalculating the hash value, and checking if this new hash value exists in the set.

If such a hash value is found, it means there exists a string in the original set that differs from the query string in exactly one position, and the program prints “YES”. If no such hash value is found after checking all characters, the program prints “NO”.

Steps-by-step:

  • Initialize an empty set stringSet to store hash values of strings.
  • Insert hash values of each string into the set.
  • Iterate through each query:
    • Compute the hash value of the query.
    • Check if there exists a string in the set that differs in exactly one position from the query.
    • Print “YES” or “NO” based on the existence.

Below is the implementation of the above approach:

C++




#include <iostream>
#include <set>
#include <string>
 
using namespace std;
 
// Constants for maximum size, alphabet size and modulo
const long long MAX_SIZE = 1000001;
const long long ALPHABET_SIZE = 11;
const long long MODULO = 1110111110111;
 
// Array to store base values
int base[MAX_SIZE];
 
// Function to calculate hash value of a string
int calculateHash(string& s)
{
    int hashValue = 0;
    // Loop through each character in the string
    for (int i = 0; i < s.size(); i++) {
        // Calculate the hash value
        hashValue += s[i] * base[i];
        hashValue %= MODULO;
    }
    return hashValue;
}
 
// Function to solve the problem
void solve(string s[], int numStrings,
           const string queries[], int q)
{
    set<int> stringSet;
 
    // Insert hash values of s into the set
    for (int i = 0; i < numStrings; i++) {
        stringSet.insert(calculateHash(s[i]));
    }
 
    // Process each query
    for (int i = 0; i < q; i++) {
        string query = queries[i];
        int hashValue = calculateHash(query);
 
        bool exists = false;
        // Check if there exists a string that differs from
        // the query in exactly one position
        for (int j = 0; j < query.size(); j++) {
            for (char c = 'a'; c < 'd'; c++) {
                if (c != query[j]) {
 
                    exists |= (stringSet.count(
                        (hashValue
                         + (c - query[j]) * base[j]
                         + 4 * MODULO)
                        % MODULO));
                }
            }
        }
 
        // Print the result
        cout << (exists ? "YES" : "NO") << endl;
    }
}
 
// Main function
int main()
{
    // Initialize base array
    base[0] = 1;
    for (int i = 1; i < MAX_SIZE; i++) {
        base[i] = base[i - 1] * ALPHABET_SIZE % MODULO;
    }
 
    // Static input:
    string s[] = { "acbacbacb" };
    int numStrings = sizeof(s) / sizeof(s[0]);
 
    string queries[]
        = { "cbacbacb", "acbacbac", "aacbacbacb",
            "acbacbacbb", "acbaabacb" };
    int q = sizeof(queries) / sizeof(queries[0]);
 
    // Call the solve function
    solve(s, numStrings, queries, q);
 
    return 0;
}


Output

NO
NO
NO
NO
YES

Time Complexity: O(q * MAX_SIZE), where q is the number of queries and MAX_SIZE is the maximum length of a string.
Auxiliary Space: O(MAX_SIZE + n), where MAX_SIZE is the maximum length of a string and n is the number of input strings.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
03 Jan, 2024
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments