Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind Nth Fibonacci Number using Binet’s Formula

Find Nth Fibonacci Number using Binet’s Formula

Given a number n, print n-th Fibonacci Number, using Binet’s Formula.

Examples:

Input: n = 5

Output: 1

Input: n = 9

Output: 34

What is Binet’s Formula?

Binet’s Formula states that:

If F_n is the n_{th} Fibonacci number, then F_{n} = \frac{1}{\sqrt{5}}\left ( \left ( \frac{1+\sqrt{5}}{2} \right )^{n} -  \left ( \frac{1-\sqrt{5}}{2} \right )^{n}  \right )

Why is Binet’s Formula not used regularly?

Binet’s Formula gives correct results only up to n<71.

Because as we move forward from n>=71, the rounding error becomes significantly large. Although, using the floor function instead of the round function will give the correct result for n=71. But after n=72, it also fails.

Example: For N=72 , Correct result is 498454011879264 but above formula gives 498454011879265.

Approach to Find Nth Fibonacci Number using Binet’s Formula

In this method, we directly implement the formula for the nth term in the Fibonacci series. Fn = {[(√5 + 1)/2] ^ n} / √5 

Below is the implementation of the above approach:

C++




// C++ Program to find n'th fibonacci Number
#include <cmath>
#include <iostream>
  
int fib(int n)
{
    double phi = (1 + sqrt(5)) / 2;
    return round(pow(phi, n) / sqrt(5));
}
  
// Driver Code
int main()
{
    int n = 9;
    std::cout << fib(n) << std::endl;
    return 0;
}
// This code is contributed by Lokesh Mohanty.


Java




// Java Program to find n'th fibonacci Number
import java.util.*;
  
public class GFG {
  
    static int fib(int n)
    {
        double phi = (1 + Math.sqrt(5)) / 2;
        return (int)Math.round(Math.pow(phi, n)
                               / Math.sqrt(5));
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int n = 9;
        System.out.println(fib(n));
    }
};
// This code is contributed by PrinciRaj1992


Python3




# Python3 program to find n'th
# fibonacci Number
import math
  
  
def fibo(n):
    phi = (1 + math.sqrt(5)) / 2
  
    return round(pow(phi, n) / math.sqrt(5))
  
  
# Driver code
if __name__ == '__main__':
  
    n = 9
  
    print(fibo(n))
  
# This code is contributed by prasun_parate


C#




// C# Program to find n'th fibonacci Number
using System;
  
public class GFG {
    static int fib(int n)
    {
        double phi = (1 + Math.Sqrt(5)) / 2;
        return (int)Math.Round(Math.Pow(phi, n)
                               / Math.Sqrt(5));
    }
  
    // Driver code
    public static void Main()
    {
        int n = 9;
        Console.WriteLine(fib(n));
    }
}
  
// This code is contributed by 29AjayKumar


Javascript




// Javascript Program to find n'th fibonacci Number
function fib(n) {
  let phi = (1 + Math.sqrt(5)) / 2;
  return Math.round(Math.pow(phi, n) / Math.sqrt(5));
}
  
let n = 9;
console.log(fib(n));
  
// This code is contributed by mukesh07.


PHP




<?php
// PHP Program to find n'th
// fibonacci Number 
  
function fib($n
    $phi = (1 + sqrt(5)) / 2; 
    return round(pow($phi, $n) / sqrt(5)); 
  
// Driver Code
$n = 9; 
echo fib($n) ; 
  
// This code is contributed by Ryuga
?>


Output

34

Time Complexity: O(log n), this is because calculating phi^n takes log n time
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
08 Sep, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments