Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIFind maximum of minimums from Layers of Matrix using numbers 1 to...

Find maximum of minimums from Layers of Matrix using numbers 1 to N^2

Given a square matrix of size N*N using numbers 1 to N^2, the task is to find the maximum of minimums of each layer of the matrix.

The layers of the matrix are the boundary elements of the sub-matrix starting at (i, i) and ending at (N – i + 1, N – i + 1), where 1<= i<= ceil(N/2).

Examples:

 Input: Below is the given matrix:
1      2     3     4
5     6     7     8
9    10   11    12
13  14   15    16
Output: 6
Explanation: The layers are {1, 2, 3, 4, 8, 12, 16, 15, 14, 13, 9, 5} with minimum 1 and {6, 7, 10, 11} with minimum 6. The maximum of 1 and 6 is 6.

Input: Below is the given matrix: 
1    2    3
4   30   5
1   2     3
Output: 30
Explanation: The layers are {1, 2, 3, 5, 3, 2, 1, 4, 1} with minimum 1 and {30} with minimum 30. The maximum of 1 and 30 is 30.

 

Approach: The idea is to observe carefully, for the ith layer, the elements of the top, left, right and bottom boundary are at indexes:

  • top boundary is at indexes (i, j)
  • left boundary is at indexes (j, i)
  • right boundary is at indexes (j, n – i + 1)
  • bottom boundary is at indexes (n – i + 1, j), where i <= j <= n – i + 1

Thus, find the minimums of each layer and store the maximum of these minimums.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// of the boundary elements
int getBoundaryMin(int a[][4], int n,
                   int index)
{
    int min1 = INT_MAX;
 
    for(int i = index; i < n - index; i++)
    {
         
        // Top boundary
        min1 = min(min1,
                   a[index][i]);
 
        // Left boundary
        min1 = min(min1,
                   a[i][index]);
 
        // Right boundary
        min1 = min(min1,
                    a[i][n - index - 1]);
 
        // Bottom boundary
        min1 = min(min1,
                   a[n - index - 1][i]);
    }
    return min1;
}
 
// Function to find the maximum of
// minimums of all layers
void MaximumOfMinimum(int a[][4], int n)
{
     
    // Calculate the layers
    int layers = n / 2 + n % 2;
    int max1 = INT_MIN;
 
    // Iterate for all the layers
    for(int i = 0; i < layers; i++)
    {
         
        // Find maximum
        max1 = max(max1,
                   getBoundaryMin(a, n, i));
    }
     
    // Print the answer
    cout << (max1);
}
 
// Driver Code
int main()
{
     
    // Initialize the matrix
    int a[][4] = { { 1, 2, 3, 4 },
                   { 5, 6, 7, 8 },
                   { 9, 10, 11, 12 },
                   { 13, 14, 15, 16 } };
 
    int n = sizeof(a) / sizeof(a[0]);
 
    // Function call
    MaximumOfMinimum(a, n);
}
 
// This code is contributed by chitranayal


Java




// Java Program for the above approach
 
class GFG {
 
    // Function to return the minimum
    // of the boundary elements
    static int
    getBoundaryMin(int a[][], int n,
                   int index)
    {
        int min = Integer.MAX_VALUE;
 
        for (int i = index; i < n - index; i++) {
 
            // Top boundary
            min = Math.min(
                min,
                a[index][i]);
 
            // Left boundary
            min = Math.min(
                min,
                a[i][index]);
 
            // Right boundary
            min = Math.min(
                min,
                a[i][n - index - 1]);
 
            // Bottom boundary
            min = Math.min(
                min,
                a[n - index - 1][i]);
        }
 
        return min;
    }
 
    // Function to find the maximum of
    // minimums of all layers
    static void MaximumOfMinimum(
        int a[][], int n)
    {
        // Calculate the layers
        int layers = n / 2 + n % 2;
        int max = Integer.MIN_VALUE;
 
        // Iterate for all the layers
        for (int i = 0; i < layers; i++) {
 
            // Find maximum
            max
                = Math.max(
                    max,
                    getBoundaryMin(a, n, i));
        }
 
        // Print the answer
        System.out.print(max);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Initialize the matrix
        int a[][] = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
 
        int n = a.length;
 
        // Function call
        MaximumOfMinimum(a, n);
    }
}


Python3




# Python3 program for the above approach
import sys
 
# Function to return the minimum
# of the boundary elements
def getBoundaryMin(a, n, index):
     
    min1 = sys.maxsize
 
    for i in range(index, n - index):
         
        # Top boundary
        min1 = min(min1, a[index][i])
 
        # Left boundary
        min1 = min(min1, a[i][index])
 
        # Right boundary
        min1 = min(min1, a[i][n - index - 1])
 
        # Bottom boundary
        min1 = min(min1, a[n - index - 1][i])
     
    return min1
 
# Function to find the maximum of
# minimums of all layers
def MaximumOfMinimum(a, n):
     
    # Calculate the layers
    layers = n // 2 + n % 2
    max1 = -sys.maxsize - 1
 
    # Iterate for all the layers
    for i in range(0, layers):
         
        # Find maximum
        max1 = max(max1, getBoundaryMin(a, n, i))
     
    # Print the answer
    print(max1)
 
# Driver Code
     
# Initialize the matrix
a = [ [ 1, 2, 3, 4 ],
      [ 5, 6, 7, 8 ],
      [ 9, 10, 11, 12 ] ,
      [ 13, 14, 15, 16 ] ]
 
n = len(a)
 
# Function call
MaximumOfMinimum(a, n)
 
# This code is contributed by sanjoy_62


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to return the minimum
// of the boundary elements
static int getBoundaryMin(int[,]a, int n,
                          int index)
{
    int min = int.MaxValue;
 
    for(int i = index; i < n - index; i++)
    {
         
        // Top boundary
        min = Math.Min(min, a[index, i]);
 
        // Left boundary
        min = Math.Min(min, a[i, index]);
 
        // Right boundary
        min = Math.Min(min, a[i, n - index - 1]);
 
        // Bottom boundary
        min = Math.Min(min, a[n - index - 1, i]);
    }
    return min;
}
 
// Function to find the maximum of
// minimums of all layers
static void MaximumOfMinimum(int[,]a, int n)
{
     
    // Calculate the layers
    int layers = n / 2 + n % 2;
    int max = int.MinValue;
 
    // Iterate for all the layers
    for(int i = 0; i < layers; i++)
    {
         
        // Find maximum
        max = Math.Max(max,
                       getBoundaryMin(a, n, i));
    }
 
    // Print the answer
    Console.Write(max);
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Initialize the matrix
    int[,]a = { { 1, 2, 3, 4 },
                { 5, 6, 7, 8 },
                { 9, 10, 11, 12 },
                { 13, 14, 15, 16 } };
 
    int n = a.GetLength(0);
 
    // Function call
    MaximumOfMinimum(a, n);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to return the minimum
// of the boundary elements
function getBoundaryMin(a, n, index)
{
    min1 = 1000000000;
     
    for(var i = index; i < n - index; i++)
    {
         
        // Top boundary
        min1 = Math.min(min1,
        a[index][i]);
         
        // Left boundary
        min1 = Math.min(min1,
        a[i][index]);
         
        // Right boundary
        min1 = Math.min(min1,
        a[i][n - index - 1]);
         
        // Bottom boundary
        min1 = Math.min(min1,
        a[n - index - 1][i]);
    }
    return min1;
}
     
// Function to find the maximum of
// minimums of all layers
function MaximumOfMinimum(a, n)
{
     
    // Calculate the layers
    var layers = parseInt(n / 2) + n % 2;
    var max1 = -1000000000;
     
    // Iterate for all the layers
    for(var i = 0; i < layers; i++)
    {
         
        // Find maximum
        max1 = Math.max(max1,
        getBoundaryMin(a, n, i));
    }
     
    // Print the answer
    document.write(max1);
}
 
// Driver Code
 
// Initialize the matrix
var a = [ [ 1, 2, 3, 4 ],
          [ 5, 6, 7, 8 ],
          [ 9, 10, 11, 12 ],
          [ 13, 14, 15, 16 ] ];
var n = a.length;
 
// Function call
MaximumOfMinimum(a, n);
 
// This code is contributed by itsok
 
</script>


Output: 

6

 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments