Given a string str of lowercase alphabets, the task is to find all distinct palindromic sub-strings of the given string.
Examples:
Input: str = “abaaa”
Output: 5
Palindromic sub-strings are “a”, “aa”, “aaa”, “aba” and “b”Input: str = “abcd”
Output: 4
Approach: The solution to this problem has been discussed here using Manacher’s algorithm. However we can also solve it using dynamic programming.
Create an array dp[][] where dp[i][j] is set to 1 if str[i…j] is a palindrome else 0. After the array has been generated, store all the palindromic sub-strings in a map in order to get the count of distinct sub-strings.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count // of distinct palindromic sub-strings // of the given string s int palindromeSubStrs(string s) { // To store the positions of // palindromic sub-strings int dp[s.size()][s.size()]; int st, end, i, j, len; // Map to store the sub-strings map<string, bool > m; for (i = 0; i < s.size(); i++) { // Sub-strings of length 1 are palindromes dp[i][i] = 1; // Store continuous palindromic sub-strings m[string(s.begin() + i, s.begin() + i + 1)] = 1; } // Store palindromes of size 2 for (i = 0; i < s.size() - 1; i++) { if (s[i] == s[i + 1]) { dp[i][i + 1] = 1; m[string(s.begin() + i, s.begin() + i + 2)] = 1; } // If str[i...(i+1)] is not a palindromic // then set dp[i][i + 1] = 0 else { dp[i][i + 1] = 0; } } // Find palindromic sub-strings of length>=3 for (len = 3; len <= s.size(); len++) { for (st = 0; st <= s.size() - len; st++) { // End of palindromic substring end = st + len - 1; // If s[start] == s[end] and // dp[start+1][end-1] is already palindrome // then s[start....end] is also a palindrome if (s[st] == s[end] && dp[st + 1][end - 1]) { // Set dp[start][end] = 1 dp[st][end] = 1; m[string(s.begin() + st, s.begin() + end + 1)] = 1; } // Not a palindrome else dp[st][end] = 0; } } // Return the count of distinct palindromes return m.size(); } // Driver code int main() { string s = "abaaa" ; cout << palindromeSubStrs(s); return 0; } |
Java
// Java implementation of the approach import java.util.HashMap; class GFG { // Function to return the count // of distinct palindromic sub-strings // of the given string s static int palindromeSubStrs(String s) { // To store the positions of // palindromic sub-strings int [][] dp = new int [s.length()][s.length()]; int st, end, i, len; // Map to store the sub-strings HashMap<String, Boolean> m = new HashMap<>(); for (i = 0 ; i < s.length(); i++) { // Sub-strings of length 1 are palindromes dp[i][i] = 1 ; // Store continuous palindromic sub-strings m.put(s.substring(i, i + 1 ), true ); } // Store palindromes of size 2 for (i = 0 ; i < s.length() - 1 ; i++) { if (s.charAt(i) == s.charAt(i + 1 )) { dp[i][i + 1 ] = 1 ; m.put(s.substring(i, i + 2 ), true ); } // If str[i...(i+1)] is not a palindromic // then set dp[i][i + 1] = 0 else dp[i][i + 1 ] = 0 ; } // Find palindromic sub-strings of length>=3 for (len = 3 ; len <= s.length(); len++) { for (st = 0 ; st <= s.length() - len; st++) { // End of palindromic substring end = st + len - 1 ; // If s[start] == s[end] and // dp[start+1][end-1] is already palindrome // then s[start....end] is also a palindrome if (s.charAt(st) == s.charAt(end) && dp[st + 1 ][end - 1 ] == 1 ) { // Set dp[start][end] = 1 dp[st][end] = 1 ; m.put(s.substring(st, end + 1 ), true ); } // Not a palindrome else dp[st][end] = 0 ; } } // Return the count of distinct palindromes return m.size(); } // Driver Code public static void main(String[] args) { String s = "abaaa" ; System.out.println(palindromeSubStrs(s)); } } // This code is contributed by // sanjeev2552 |
Python3
# Python3 implementation of the approach # import numpy lib as np import numpy as np; # Function to return the count # of distinct palindromic sub-strings # of the given string s def palindromeSubStrs(s) : # To store the positions of # palindromic sub-strings dp = np.zeros(( len (s), len (s))); # Map to store the sub-strings m = {}; for i in range ( len (s)) : # Sub-strings of length 1 are palindromes dp[i][i] = 1 ; # Store continuous palindromic sub-strings m[s[i: i + 1 ]] = 1 ; # Store palindromes of size 2 for i in range ( len (s) - 1 ) : if (s[i] = = s[i + 1 ]) : dp[i][i + 1 ] = 1 ; m[ s[i : i + 2 ]] = 1 ; # If str[i...(i+1)] is not a palindromic # then set dp[i][i + 1] = 0 else : dp[i][i + 1 ] = 0 ; # Find palindromic sub-strings of length>=3 for length in range ( 3 , len (s) + 1 ) : for st in range ( len (s) - length + 1 ) : # End of palindromic substring end = st + length - 1 ; # If s[start] == s[end] and # dp[start+1][end-1] is already palindrome # then s[start....end] is also a palindrome if (s[st] = = s[end] and dp[st + 1 ][end - 1 ]) : # Set dp[start][end] = 1 dp[st][end] = 1 ; m[s[st : end + 1 ]] = 1 ; # Not a palindrome else : dp[st][end] = 0 ; # Return the count of distinct palindromes return len (m); # Driver code if __name__ = = "__main__" : s = "abaaa" ; print (palindromeSubStrs(s)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to return the count // of distinct palindromic sub-strings // of the given string s static int palindromeSubStrs(String s) { // To store the positions of // palindromic sub-strings int [,] dp = new int [s.Length, s.Length]; int st, end, i, len; // Map to store the sub-strings Dictionary<String, Boolean> m = new Dictionary<String, Boolean>(); for (i = 0; i < s.Length; i++) { // Sub-strings of length 1 are palindromes dp[i,i] = 1; // Store continuous palindromic sub-strings if (!m.ContainsKey(s.Substring(i, 1))) m.Add(s.Substring(i, 1), true ); } // Store palindromes of size 2 for (i = 0; i < s.Length - 1; i++) { if (s[i] == s[i + 1]) { dp[i, i + 1] = 1; if (!m.ContainsKey(s.Substring(i, 2))) m.Add(s.Substring(i, 2), true ); } // If str[i...(i+1)] is not a palindromic // then set dp[i,i + 1] = 0 else dp[i, i + 1] = 0; } // Find palindromic sub-strings of length>=3 for (len = 3; len <= s.Length; len++) { for (st = 0; st <= s.Length - len; st++) { // End of palindromic substring end = st + len - 1; // If s[start] == s[end] and // dp[start+1,end-1] is already palindrome // then s[start....end] is also a palindrome if (s[st] == s[end] && dp[st + 1, end - 1] == 1) { // Set dp[start,end] = 1 dp[st, end] = 1; m.Add(s.Substring(st, end + 1-st), true ); } // Not a palindrome else dp[st, end] = 0; } } // Return the count of distinct palindromes return m.Count; } // Driver Code public static void Main(String[] args) { String s = "abaaa" ; Console.WriteLine(palindromeSubStrs(s)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach // Function to return the count // of distinct palindromic sub-strings // of the given string s function palindromeSubStrs(s) { // To store the positions of // palindromic sub-strings let dp = new Array(s.length); for (let i = 0; i < dp.length; i++) { dp[i] = new Array(2); } for (let i = 0; i < dp.length; i++) { for (let j = 0; j < dp.length; j++) { dp[i][j] = 0; } } let st, end, i, len; // Map to store the sub-strings let m = new Map(); for (i = 0; i < s.length; i++) { // Sub-strings of length 1 are palindromes dp[i][i] = 1; // Store continuous palindromic sub-strings m.set(s.substr(i, i + 1), true ); } // Store palindromes of size 2 for (i = 0; i < s.length - 1; i++) { if (s[i] == s[i + 1]) { dp[i][i + 1] = 1; m.set(s.substr(i, i + 2), true ); } // If str[i...(i+1)] is not a palindromic // then set dp[i][i + 1] = 0 else dp[i][i + 1] = 0; } // Find palindromic sub-strings of length>=3 for (len = 3; len <= s.length; len++) { for (st = 0; st <= s.length - len; st++) { // End of palindromic substring end = st + len - 1; // If s[start] == s[end] and // dp[start+1][end-1] is already palindrome // then s[start....end] is also a palindrome if (s[st] == s[end] && dp[st + 1][end - 1] == 1) { // Set dp[start][end] = 1 dp[st][end] = 1; m.set(s.substr(st, end + 1), true ); } // Not a palindrome else dp[st][end] = 0; } } // Return the count of distinct palindromes return m.size; } // Driver Code let s = "abaaa" ; document.write(palindromeSubStrs(s)); // This code is contributed by code_hunt </script> |
5
Time complexity : O((n^2)logn), where n is the length of the input string. This is because we are using a nested loop to iterate over all possible substrings and check if they are palindromic.
Space complexity : O(n^2). This is because we are using a 2D array of size n x n to store the results of subproblems, and a map to store the distinct palindromic substrings.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!