Given an unsorted vector arr, the task is to create a balanced binary search tree using the elements of the array.
Note: There can be more than one balanced BST. Forming any is acceptable
Examples:
Input: arr[] = { 2, 1, 3}
Output: 2 1 3
Explanation: The tree formed is show below. The preorder traversal is 2 1 3
2
/ \
1 3Input: arr[] = {4, 3, 1, 2}
Output: 2 1 3 4
Explanation: The tree formed is
2
/ \
1 3
\
4
Another possible option can provide preorder traversal is 3 2 1 4
Approach: To solve this problem, follow the below steps:
- Firstly, we will sort the vector using the sort function.
- Now, get the Middle of the vector and make it root.
- Recursively do the same for the left half and the right half.
- Get the middle of the left half and make it the left child of the root created in step 2.
- Get the middle of the right half and make it the right child of the root created in step 2.
Below is the implementation of the above approach:
C++
// C++ program to print BST in given range #include <bits/stdc++.h> using namespace std; // Node of Binary Search Tree class Node { public : Node* left; int data; Node* right; Node( int d) { data = d; left = right = NULL; } }; // A function that constructs Balanced // Binary Search Tree from a vector Node* createBST(vector< int > v, int start, int end) { sort(v.begin(), v.end()); // Base Case if (start > end) return NULL; // Get the middle element and make it root int mid = (start + end) / 2; Node* root = new Node(v[mid]); // Recursively construct the left subtree // and make it left child of root root->left = createBST(v, start, mid - 1); // Recursively construct the right subtree // and make it right child of root root->right = createBST(v, mid + 1, end); return root; } vector< int > preNode, vec; // A utility function to print // preorder traversal of BST vector< int > preOrder(Node* node) { // Root Left Right if (node == NULL) { return vec; } preNode.push_back(node->data); preOrder(node->left); preOrder(node->right); return preNode; } // Driver Code int main() { vector< int > v = { 4, 3, 1, 2 }; Node* root = createBST(v, 0, v.size() - 1); vector< int > ans = preOrder(root); for ( auto i : ans) { cout << i << " " ; } return 0; } |
Java
// Java program for the above approach import java.util.*; // Node of Binary Search Tree class Node { Node left; int data; Node right; Node( int d) { data = d; left = right = null ; } } class Main { static List<Integer> preNode = new ArrayList<>(); static List<Integer> vec = new ArrayList<>(); // A function that constructs Balanced // Binary Search Tree from a vector static Node createBST(List<Integer> v, int start, int end) { Collections.sort(v); // Base Case if (start > end) return null ; // Get the middle element and make it root int mid = (start + end) / 2 ; Node root = new Node(v.get(mid)); // Recursively construct the left subtree // and make it left child of root root.left = createBST(v, start, mid - 1 ); // Recursively construct the right subtree // and make it right child of root root.right = createBST(v, mid + 1 , end); return root; } // A utility function to print // preorder traversal of BST static List<Integer> preOrder(Node node) { // Root Left Right if (node == null ) { return vec; } preNode.add(node.data); preOrder(node.left); preOrder(node.right); return preNode; } // Driver Code public static void main(String[] args) { List<Integer> v = Arrays.asList( 4 , 3 , 1 , 2 ); Node root = createBST(v, 0 , v.size() - 1 ); List<Integer> ans = preOrder(root); for ( int i : ans) { System.out.print(i + " " ); } } } // This code is contributed by codebraxnzt |
C#
// C# Program for the above approach using System; using System.Collections.Generic; using System.Linq; // Node of Binary Search Tree class Node { public Node left; public int data; public Node right; public Node( int d) { data = d; left = right = null ; } } class MainClass { static List< int > preNode = new List< int >(); static List< int > vec = new List< int >(); // A function that constructs Balanced // Binary Search Tree from a vector static Node createBST(List< int > v, int start, int end) { v.Sort(); // Base Case if (start > end) return null ; // Get the middle element and make it root int mid = (start + end) / 2; Node root = new Node(v[mid]); // Recursively construct the left subtree // and make it left child of root root.left = createBST(v, start, mid - 1); // Recursively construct the right subtree // and make it right child of root root.right = createBST(v, mid + 1, end); return root; } // A utility function to print // preorder traversal of BST static List< int > preOrder(Node node) { // Root Left Right if (node == null ) { return vec; } preNode.Add(node.data); preOrder(node.left); preOrder(node.right); return preNode; } // Driver Code public static void Main( string [] args) { List< int > v = new List< int > { 4, 3, 1, 2 }; Node root = createBST(v, 0, v.Count - 1); List< int > ans = preOrder(root); foreach ( int i in ans) { Console.Write(i + " " ); } } } // This code is contributed by adityashatmfh |
PreOrder Traversal of constructed BST 4 2 1 3 6 5 7
Time Complexity: O(N * logN)
Auxiliary Space: O(N) to create the tree
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!