Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICount ways to partition Binary Array into subarrays containing K 0s each

Count ways to partition Binary Array into subarrays containing K 0s each

Given a binary array arr[] of size N, and an integer K, the task is to calculate the number of ways to partition the array into non-overlapping subarrays, where each subarray has exactly K number 0s.

Examples:

Input: arr[] = [ 0, 0, 1, 1, 0, 1, 0], K = 2
Output: 3
Explanation: Different possible partitions are: 
{{0, 0}, {1, 1, 0, 1, 0}}, {{0, 0, 1}, {1, 0, 1, 0}}, {{0, 0, 1, 1}, {0, 1, 0}}. So, the output will be 3.

Input: arr[] = {0, 0, 1, 0, 1, 0}, K = 2
Output: 2

Input: arr[] = [1, 0, 1, 1], K = 2
Output: 0

 

Approach: The approach to solve the problem is based on the following idea:

If jth 0 is the last 0 for a subarray and (j+1)th 0 is the first 0 of another subarray, then the possible number of ways to partition into those two subarrays is one more than the number of 1s in between jth and (j+1)th 0.

From the above observation, it can be said that the total possible ways to partition the subarray is the multiplication of the count of 1s between K*x th and (K*x + 1)th 0, for all possible x such that K*x does not exceed the total count of 0s in the array.

Follow the illustration below for a better understanding of the problem,

Illustration:

Consider array arr[] = {0, 0, 1, 1, 0, 1, 0, 1, 0, 0}, K = 2

Index of 2nd 0 and 3rd 0 are 1 and 4
        => Total number of 1s in between = 2.
        => Possible partition with these 0s = 2 + 1 = 3.
        => Total possible partitions till now = 3

Index of 4th 0 and 5th 0 are 6 and 8
        => Total number of 1s in between = 1.
        => Possible partition with these 0s = 1 + 1 = 2.
        => Total possible partitions till now = 3*2 = 6

The possible partitions are 6
{{0, 0}, {1, 1, 0, 1, 0}, {1, 0, 0}}, {{0, 0}, {1, 1, 0, 1, 0, 1}, {0, 0}},  
{{0, 0, 1}, {1, 0, 1, 0}, {1, 0, 0}}, {{0, 0, 1}, {1, 0, 1, 0, 1}, {0, 0}}, 
{{0, 0, 1, 1}, {0, 1, 0}, {1, 0, 0}}, {{0, 0, 1, 1}, {0, 1, 0, 1}, {0, 0}} 

Follow the steps mentioned below to solve the problem:

  • Initialize a counter variable to 1(claiming there exists at least one such possible way). 
  • If there are less than K 0s or number of 0s is not divisible by K, then such partition is not possible.
  • Then, for every possible (K*x)th and (K*x + 1)th number of 0, calculate the number of possible partitions using the above observation and multiply that with the counter variable to get the total possible partitions.
  • Return the value of the counter variable.

Here is the code for the above approach:

C++




// C++ program for above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function used to calculate the number of
// ways to divide the array
int number_of_ways(vector<int>& arr, int K)
{
    // Initialize a counter variable no_0 to
    // calculate the number of 0
    int no_0 = 0;
 
    // Initialize a vector to
    // store the indices of 0s
    vector<int> zeros;
    for (int i = 0; i < arr.size(); i++) {
        if (arr[i] == 0) {
            no_0++;
            zeros.push_back(i);
        }
    }
 
    // If number of 0 is not divisible by K
    // or no 0 in the sequence return 0
    if (no_0 % K || no_0 == 0)
        return 0;
 
    int res = 1;
 
    // For every (K*n)th and (K*n+1)th 0
    // calculate the distance between them
    for (int i = K; i < zeros.size();) {
        res *= (zeros[i] - zeros[i - 1]);
        i += K;
    }
 
    // Return the number of such partitions
    return res;
}
 
// Driver code
int main()
{
    vector<int> arr = { 0, 0, 1, 1, 0, 1, 0 };
    int K = 2;
 
    // Function call
    cout << number_of_ways(arr, K) << endl;
    return 0;
}


Java




// Java program for above approach
import java.io.*;
import java.util.*;
 
class GFG {
    // Function used to calculate the number of
    // ways to divide the array
    public static int number_of_ways(int arr[], int K)
    {
        // Initialize a counter variable no_0 to
        // calculate the number of 0
        int no_0 = 0;
 
        // Initialize a arraylist to
        // store the indices of 0s
        ArrayList<Integer> zeros = new ArrayList<Integer>();
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == 0) {
                no_0++;
                zeros.add(i);
            }
        }
 
        // If number of 0 is not divisible by K
        // or no 0 in the sequence return 0
        if ((no_0 % K != 0) || no_0 == 0)
            return 0;
 
        int res = 1;
 
        // For every (K*n)th and (K*n+1)th 0
        // calculate the distance between them
        for (int i = K; i < zeros.size();) {
            res *= (zeros.get(i) - zeros.get(i - 1));
            i += K;
        }
 
        // Return the number of such partitions
        return res;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 0, 0, 1, 1, 0, 1, 0 };
        int K = 2;
 
        // Function call
        System.out.println(number_of_ways(arr, K));
    }
}
 
// This code is contributed by Rohit Pradhan


Python3




# Python3 program for above approach
 
# Function used to calculate the number of
# ways to divide the array
def number_of_ways(arr, K):
   
    # Initialize a counter variable no_0 to
    # calculate the number of 0
    no_0 = 0
     
    # Initialize am array to
    # store the indices of 0s
    zeros = []
    for i in range(len(arr)):
        if arr[i] == 0:
            no_0 += 1
            zeros.append(i)
             
    # If number of 0 is not divisible by K
    # or no 0 in the sequence return 0
    if no_0 % K or no_0 == 0:
        return 0
 
    res = 1
     
    # For every (K*n)th and (K*n+1)th 0
    # calculate the distance between them
    i = K
    while (i < len(zeros)):
        res *= (zeros[i] - zeros[i - 1])
        i += K
         
    # Return the number of such partitions
    return res
 
# Driver code
arr = [0, 0, 1, 1, 0, 1, 0]
K = 2
 
# Function call
print(number_of_ways(arr, K))
 
# This code is contributed by phasing17.


C#




// C# program for above approach
 
using System;
using System.Collections.Generic;
 
public class GFG
{
 
  // Function used to calculate the number of
  // ways to divide the array
  public static int number_of_ways(int[] arr, int K)
  {
 
    // Initialize a counter variable no_0 to
    // calculate the number of 0
    int no_0 = 0;
 
    // Initialize a arraylist to
    // store the indices of 0s
    var zeros = new List<int>();
    for (int i = 0; i < arr.Length; i++) {
      if (arr[i] == 0) {
        no_0++;
        zeros.Add(i);
      }
    }
 
    // If number of 0 is not divisible by K
    // or no 0 in the sequence return 0
    if ((no_0 % K != 0) || no_0 == 0)
      return 0;
 
    int res = 1;
 
    // For every (K*n)th and (K*n+1)th 0
    // calculate the distance between them
    for (int i = K; i < zeros.Count;) {
      res *= (zeros[i] - zeros[i - 1]);
      i += K;
    }
 
    // Return the number of such partitions
    return res;
  }
  public static void Main(string[] args)
  {
    int[] arr = { 0, 0, 1, 1, 0, 1, 0 };
    int K = 2;
 
    // Function call
    Console.WriteLine(number_of_ways(arr, K));
  }
}
 
// this code was contributed by phasing17


Javascript




<script>
    // JavaScript program for above approach
 
 
    // Function used to calculate the number of
    // ways to divide the array
    const number_of_ways = (arr, K) => {
        // Initialize a counter variable no_0 to
        // calculate the number of 0
        let no_0 = 0;
 
        // Initialize a vector to
        // store the indices of 0s
        let zeros = [];
        for (let i = 0; i < arr.length; i++) {
            if (arr[i] == 0) {
                no_0++;
                zeros.push(i);
            }
        }
 
        // If number of 0 is not divisible by K
        // or no 0 in the sequence return 0
        if (no_0 % K || no_0 == 0)
            return 0;
 
        let res = 1;
 
        // For every (K*n)th and (K*n+1)th 0
        // calculate the distance between them
        for (let i = K; i < zeros.length;) {
            res *= (zeros[i] - zeros[i - 1]);
            i += K;
        }
 
        // Return the number of such partitions
        return res;
    }
 
    // Driver code
 
    let arr = [0, 0, 1, 1, 0, 1, 0];
    let K = 2;
 
    // Function call
    document.write(number_of_ways(arr, K));
 
// This code is contributed by rakeshsahni
 
</script>


Output

3

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments