Thursday, January 16, 2025
Google search engine
HomeData Modelling & AICount the total number of triangles after Nth operation

Count the total number of triangles after Nth operation

Given an equilateral triangle, the task is to compute the total number of triangles after performing the following operation N times. 
For every operation, the uncolored triangles are taken and divided into 4 equal equilateral triangles. Every inverted triangle formed is colored. Refer to the below figure for more details.

For N=1 the triangle formed is:

For N=2 the triangle formed is:
 

Examples: 

Input :N = 10 
Output : 118097

Input : N = 2 
Output : 17 

Approach: 

  • At every operation, 3 uncolored triangles, 1 colored triangle, and the triangle itself is formed
  • On writing the above statement mathematically; count of triangles at Nth move = 3 * count of triangles at (N-1)th move + 2
  • Therefore, initializing a variable curr = 1 and tri_count = 0
  • Next, a loop is iterated from 1 to N
  • For every iteration, the operation mentioned above is performed.
  • Finally, the tri_count is returned

Below is the implementation of the above approach: 

C++




#include <bits/stdc++.h>
using namespace std;
// function to return the
// total no.of Triangles
int CountTriangles(int n)
{
    int curr = 1;
    int Tri_count = 0;
    for (int i = 1; i <= n; i++) {
        // For every subtriangle formed
        // there are possibilities of
        // generating (curr*3)+2
 
        Tri_count = (curr * 3) + 2;
        // Changing the curr value to Tri_count
        curr = Tri_count;
    }
    return Tri_count;
}
 
// driver code
int main()
{
    int n = 10;
    cout << CountTriangles(n);
    return 0;
}


Java




import java.io.*;
 
public class Gfg {
    // Method to return the
    // total no.of Triangles
    public static int CountTriangles(int n)
    {
        int curr = 1;
        int Tri_count = 0;
        for (int i = 1; i <= n; i++) {
            // For every subtriangle formed
            // there are possibilities of
            // generating (curr*3)+2
 
            Tri_count = (curr * 3) + 2;
            // Changing the curr value to Tri_count
            curr = Tri_count;
        }
        return Tri_count;
    }
 
    // driver code
    public static void main(String[] args)
    {
        int n = 10;
        System.out.println(CountTriangles(n));
    }
}


Python




# Function to return the
# total no.of Triangles
def countTriangles(n):
     
    curr = 1
    Tri_count = 0
    for i in range(1, n + 1):
             
        # For every subtriangle formed
        # there are possibilities of
        # generating (curr * 3)+2
        Tri_count = (curr * 3) + 2
        # Changing the curr value to Tri_count
        curr = Tri_count
    return Tri_count
     
n = 10
print(countTriangles(n))


C#




using System;
 
class Gfg
{
    // Method to return the
    // total no.of Triangles
    public static int CountTriangles(int n)
    {
        int curr = 1;
        int Tri_count = 0;
        for (int i = 1; i <= n; i++)
        {
            // For every subtriangle formed
            // there are possibilities of
            // generating (curr*3)+2
            Tri_count = (curr * 3) + 2;
             
            // Changing the curr value to Tri_count
            curr = Tri_count;
        }
        return Tri_count;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int n = 10;
        Console.WriteLine(CountTriangles(n));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Method to return the
    // total no.of Triangles
    function CountTriangles(n)
    {
        var curr = 1;
        var Tri_count = 0;
        for (i = 1; i <= n; i++)
        {
         
            // For every subtriangle formed
            // there are possibilities of
            // generating (curr*3)+2
 
            Tri_count = (curr * 3) + 2;
            // Changing the curr value to Tri_count
            curr = Tri_count;
        }
        return Tri_count;
    }
 
    // driver code
        var n = 10;
        document.write(CountTriangles(n));
 
// This code is contributed by aashish1995
</script>


Output: 

118097

 

Time Complexity: O(n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments