Given a Binary Tree, the task is to count all paths from root to leaf which forms an Arithmetic Progression.
Examples:
Input:
Output: 2
Explanation:
The paths that form an AP in the given tree from root to leaf are:
- 1->3->5 (A.P. with common difference 2)
- 1->6->11 (A.P. with common difference 5)
Input:
Output: 1
Explanation:
The path that form an AP in the given tree from root to leaf is 1->10->19 (A.P. with difference 9)
Approach: The problem can be solved using the Preorder Traversal. Follow the steps below to solve the problem:
- Perform Preorder Traversal on the given binary tree.
- Initialize an array arr[] to store the path.
- Initialize count = 0, to store the count of paths which forms an A.P.
- After reaching the leaf node, check if the current elements in the array(i.e. the node values from root to leaf path) forms an A.P..
- If so, increment the count
- After the complete traversal of the tree, print the count.
Below is the implementation of above approach:
C++
// C++ implementation to count // the path which forms an A.P. #include <bits/stdc++.h> using namespace std; int count = 0; // Node structure struct Node { int val; // left and right child of the node Node *left, *right; // initialization constructor Node( int x) { val = x; left = NULL; right = NULL; } }; // Function to check if path // format A.P. or not bool check(vector< int > arr) { if (arr.size() == 1) return true ; // if size of arr is greater than 2 int d = arr[1] - arr[0]; for ( int i = 2; i < arr.size(); i++) { if (arr[i] - arr[i - 1] != d) return false ; } return true ; } // Function to find the maximum // setbits sum from root to leaf int countAP(Node* root, vector< int > arr) { if (!root) return 0; arr.push_back(root->val); // If the node is a leaf node if (root->left == NULL && root->right == NULL) { if (check(arr)) return 1; return 0; } // Traverse left subtree int x = countAP(root->left, arr); // Traverse the right subtree int y = countAP(root->right, arr); return x + y; } // Driver Code int main() { Node* root = new Node(1); root->left = new Node(3); root->right = new Node(6); root->left->left = new Node(5); root->left->right = new Node(7); root->right->left = new Node(11); root->right->right = new Node(23); cout << countAP(root, {}); return 0; } |
Java
// Java implementation to count // the path which forms an A.P. import java.util.*; class GFG{ int count = 0 ; // Node structure static class Node { int val; // left and right child of the node Node left, right; // Initialization constructor Node( int x) { val = x; left = null ; right = null ; } }; // Function to check if path // format A.P. or not static boolean check(Vector<Integer> arr) { if (arr.size() == 1 ) return true ; // If size of arr is greater than 2 int d = arr.get( 1 ) - arr.get( 0 ); for ( int i = 2 ; i < arr.size(); i++) { if (arr.get(i) - arr.get(i - 1 ) != d) return false ; } return true ; } // Function to find the maximum // setbits sum from root to leaf static int countAP(Node root, Vector<Integer> arr) { if (root == null ) return 0 ; arr.add(root.val); // If the node is a leaf node if (root.left == null && root.right == null ) { if (check(arr)) return 1 ; return 0 ; } // Traverse left subtree int x = countAP(root.left, arr); // Traverse the right subtree int y = countAP(root.right, arr); return x + y; } // Driver Code public static void main(String[] args) { Node root = new Node( 1 ); root.left = new Node( 3 ); root.right = new Node( 6 ); root.left.left = new Node( 5 ); root.left.right = new Node( 7 ); root.right.left = new Node( 11 ); root.right.right = new Node( 23 ); System.out.print(countAP(root, new Vector<Integer>())); } } // This code is contributed by gauravrajput1 |
Python3
# Python3 implementation to count # the path which forms an A.P. # Node structure class Node: def __init__( self , x): self .val = x self .left = None self .right = None # Function to check if path # format A.P. or not def check(arr): if len (arr) = = 1 : return True # If size of arr is greater than 2 d = arr[ 1 ] - arr[ 0 ] for i in range ( 2 , len (arr)): if arr[i] - arr[i - 1 ] ! = d: return False return True # Function to find the maximum # setbits sum from root to leaf def countAP(root, arr): if not root: return 0 arr.append(root.val) # If the node is a leaf node if (root.left = = None and root.right = = None ): if check(arr): return 1 return 0 # Traverse the left subtree x = countAP(root.left, arr) # Traverse the right subtree y = countAP(root.right, arr) return x + y # Driver code root = Node( 1 ) root.left = Node( 3 ) root.right = Node( 6 ) root.left.left = Node( 5 ) root.left.right = Node( 7 ) root.right.left = Node( 11 ) root.right.right = Node( 23 ) print (countAP(root, [])) # This code is contributed by stutipathak31jan |
C#
// C# implementation to count // the path which forms an A.P. using System; using System.Collections.Generic; class GFG{ //int count = 0; // Node structure class Node { public int val; // left and right child of the node public Node left, right; // Initialization constructor public Node( int x) { val = x; left = null ; right = null ; } }; // Function to check if path // format A.P. or not static bool check(List< int > arr) { if (arr.Count == 1) return true ; // If size of arr is greater than 2 int d = arr[1] - arr[0]; for ( int i = 2; i < arr.Count; i++) { if (arr[i] - arr[i - 1] != d) return false ; } return true ; } // Function to find the maximum // setbits sum from root to leaf static int countAP(Node root, List< int > arr) { if (root == null ) return 0; arr.Add(root.val); // If the node is a leaf node if (root.left == null && root.right == null ) { if (check(arr)) return 1; return 0; } // Traverse left subtree int x = countAP(root.left, arr); // Traverse the right subtree int y = countAP(root.right, arr); return x + y; } // Driver Code public static void Main(String[] args) { Node root = new Node(1); root.left = new Node(3); root.right = new Node(6); root.left.left = new Node(5); root.left.right = new Node(7); root.right.left = new Node(11); root.right.right = new Node(23); Console.Write(countAP(root, new List< int >())); } } // This code is contributed by amal kumar choubey |
Javascript
<script> // JavaScript implementation to count // the path which forms an A.P. let count = 0; // Node structure class Node { // Initialize constructor constructor(x) { this .val = x; this .left = null ; this .right = null ; } } var root; // Function to check if path // format A.P. or not function check(arr) { if (arr.length == 1) return true ; // If size of arr is greater than 2 let d = arr[1] - arr[0]; for (let i = 2; i < arr.length; i++) { if (arr[i] - arr[i - 1] != d) return false ; } return true ; } // Function to find the maximum // setbits sum from root to leaf function countAP(root, arr) { if (!root) return 0; arr.push(root.val); // If the node is a leaf node if (root.left == null && root.right == null ) { if (check(arr)) return 1; return 0; } // Traverse left subtree let x = countAP(root.left, arr); // Traverse the right subtree let y = countAP(root.right, arr); return x + y; } // Driver Code root = new Node(1); root.left = new Node(3); root.right = new Node(6); root.left.left = new Node(5); root.left.right = new Node(7); root.right.left = new Node(11); root.right.right = new Node(23); let arr = []; document.write(countAP(root, arr)); // This code is contributed by Dharanendra L V. </script> |
Output:
2
Time Complexity: O(N)
Auxiliary Space: O(h), where h is the height of binary tree.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!