Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of K length subsequence whose product is even

Count of K length subsequence whose product is even

Given an array arr[] and an integer K, the task is to find number of non empty subsequence of length K from the given array arr of size N such that the product of subsequence is a even number.
Example:
 

Input: arr[] = [2, 3, 1, 7], K = 3 
Output:
Explanation: 
There are 3 subsequences of length 3 whose product is even number {2, 3, 1}, {2, 3, 7}, {2, 1, 7}. 
Input: arr[] = [2, 4], K = 1 
Output:
Explanation: 
There are 2 subsequence of length 1 whose product is even number {2} {4}. 
 

Approach:
To solve the problem mentioned above we have to find the total number of subsequence of length K and subtract the count of K length subsequence whose product is odd. 
 

  1. For making a product of the subsequence odd we must choose K numbers as odd.
  2. So the number of subsequences of length K whose product is odd is possibly finding k odd numbers, i.e., “o choose k” or _{k}^{o}\textrm{C}
    where o is the count of odd numbers in the subsequence.
  3. \text{So count of a subsequence with even product = } _{k}^{n}\textrm{C} - _{k}^{o}\textrm{C}
    where n and o is the count of total numbers and odd numbers respectively.

Below is the implementation of above program: 
 

C++




// C++ implementation to Count of K
// length subsequence whose
// Product is even
 
#include <bits/stdc++.h>
using namespace std;
 
int fact(int n);
 
// Function to calculate nCr
int nCr(int n, int r)
{
    if (r > n)
        return 0;
    return fact(n)
           / (fact(r)
              * fact(n - r));
}
 
// Returns factorial of n
int fact(int n)
{
    int res = 1;
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Function for finding number
// of K length subsequences
// whose product is even number
int countSubsequences(
    int arr[], int n, int k)
{
    int countOdd = 0;
 
    // counting odd numbers in the array
    for (int i = 0; i < n; i++) {
        if (arr[i] & 1)
            countOdd++;
    }
    int ans = nCr(n, k)
              - nCr(countOdd, k);
 
    return ans;
}
 
// Driver code
int main()
{
 
    int arr[] = { 2, 4 };
    int K = 1;
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << countSubsequences(arr, N, K);
 
    return 0;
}


Java




// Java implementation to count of K
// length subsequence whose product
// is even
import java.util.*;
 
class GFG{
     
// Function to calculate nCr
static int nCr(int n, int r)
{
    if (r > n)
        return 0;
    return fact(n) / (fact(r) *
                      fact(n - r));
}
 
// Returns factorial of n
static int fact(int n)
{
    int res = 1;
    for(int i = 2; i <= n; i++)
        res = res * i;
         
    return res;
}
 
// Function for finding number
// of K length subsequences
// whose product is even number
static int countSubsequences(int arr[],
                             int n, int k)
{
    int countOdd = 0;
 
    // Counting odd numbers in the array
    for(int i = 0; i < n; i++)
    {
        if (arr[i] % 2 == 1)
            countOdd++;
    }
    int ans = nCr(n, k) - nCr(countOdd, k);
 
    return ans;
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 2, 4 };
    int K = 1;
 
    int N = arr.length;
 
    System.out.println(countSubsequences(arr, N, K));
}
}
 
// This code is contributed by ANKITKUMAR34


Python3




# Python3 implementation to Count of K
# length subsequence whose
# Product is even
 
# Function to calculate nCr
def nCr(n, r):
     
    if (r > n):
        return 0
    return fact(n) // (fact(r) *
                       fact(n - r))
 
# Returns factorial of n
def fact(n):
     
    res = 1
    for i in range(2, n + 1):
        res = res * i
         
    return res
 
# Function for finding number
# of K length subsequences
# whose product is even number
def countSubsequences(arr, n, k):
     
    countOdd = 0
 
    # Counting odd numbers in the array
    for i in range(n):
        if (arr[i] & 1):
            countOdd += 1;
 
    ans = nCr(n, k) - nCr(countOdd, k);
 
    return ans
     
# Driver code
arr = [ 2, 4 ]
K = 1
 
N = len(arr)
 
print(countSubsequences(arr, N, K))
 
# This code is contributed by ANKITKUAR34


C#




// C# implementation to count of K
// length subsequence whose product
// is even
using System;
 
class GFG{
     
// Function to calculate nCr
static int nCr(int n, int r)
{
    if (r > n)
        return 0;
         
    return fact(n) / (fact(r) *
                      fact(n - r));
}
 
// Returns factorial of n
static int fact(int n)
{
    int res = 1;
    for(int i = 2; i <= n; i++)
        res = res * i;
         
    return res;
}
 
// Function for finding number
// of K length subsequences
// whose product is even number
static int countSubsequences(int []arr,
                             int n, int k)
{
    int countOdd = 0;
 
    // Counting odd numbers in the array
    for(int i = 0; i < n; i++)
    {
        if (arr[i] % 2 == 1)
            countOdd++;
    }
    int ans = nCr(n, k) - nCr(countOdd, k);
 
    return ans;
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 2, 4 };
    int K = 1;
 
    int N = arr.Length;
 
    Console.WriteLine(countSubsequences(arr, N, K));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// javascript implementation to Count of K
// length subsequence whose
// Product is even
 
 
// Function to calculate nCr
function nCr(n, r)
{
    if (r > n)
        return 0;
    return fact(n)
           / (fact(r)
              * fact(n - r));
}
 
// Returns factorial of n
function fact(n)
{
    var res = 1;
    for (var i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Function for finding number
// of K length subsequences
// whose product is even number
function countSubsequences( arr, n, k)
{
    var countOdd = 0;
 
    // counting odd numbers in the array
    for (var i = 0; i < n; i++) {
        if (arr[i] & 1)
            countOdd++;
    }
    var ans = nCr(n, k)
              - nCr(countOdd, k);
 
    return ans;
}
 
// Driver code
var arr = [ 2, 4 ];
var K = 1;
var N = arr.length;
document.write( countSubsequences(arr, N, K));
 
</script>


Output: 

2

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments