Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount of integers in given range having their last K digits are...

Count of integers in given range having their last K digits are equal

Given a range from L to R and an integer K, the task is to count the number of integers in the given range such that their last K digits are equal.

Example: 

Input: L = 49, R = 101, K=2
Output: 6
Explanation: There are 6 possible integers t.e., 55, 66, 77, 88, 99 and 100 such that their last K(i.e., 2) digits are equal.

Input: L = 10, R = 20, K=2
Output: 1

 

Efficient Approach: It can be observed that the count of integers i in the range 1 to X having the last  K digits equal to an integer z (i.e., i % 10K = z) are (X – z)/10K + 1. Using this observation the above problem can be solved using the below steps:

  1. Suppose intCount(X, K) represents the count of integers from 1 to X having the last K digits as equal.
  2. To calculate intCount(X, K), iterate over all possibilities of z having K digits (i.e., {00…0, 11…1, 22…2, 33…3, 44…4, …., 99…9 }) in the formula (X – z)/10K +1 and maintain their sum which is the required value.
  3. Therefore, the count of integers in range L to R  can be obtained as intCount(R, K) – intCount(L-1, K).

Below is the implementation of the above approach:

C++




// C++ Program of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// integers from 1 to X having the
// last K digits as equal
int intCount(int X, int K)
{
    // Stores the total count of integers
    int ans = 0;
 
    // Loop to iterate over all
    // possible values of z
    for (int z = 0; z < pow(10, K);
         z += (pow(10, K) - 1) / 9) {
 
        // Terminate the loop when z > X
        if (z > X)
            break;
 
        // Add count of integers with
        // last K digits equal to z
        ans += ((X - z) / pow(10, K) + 1);
    }
 
    // Return count
    return ans;
}
 
// Function to return the count of
// integers from L to R having the
// last K digits as equal
int intCountInRange(int L, int R, int K)
{
    return (intCount(R, K)
            - intCount(L - 1, K));
}
 
// Driver Code
int main()
{
    int L = 49;
    int R = 101;
    int K = 2;
 
    // Function Call
    cout << intCountInRange(L, R, K);
 
    return 0;
}


Java




// Java Program of the above approach
import java.util.*;
 
class GFG{
 
// Function to return the count of
// integers from 1 to X having the
// last K digits as equal
static int intCount(int X, int K)
{
    // Stores the total count of integers
    int ans = 0;
 
    // Loop to iterate over all
    // possible values of z
    for (int z = 0; z < Math.pow(10, K);
         z += (Math.pow(10, K) - 1) / 9) {
 
        // Terminate the loop when z > X
        if (z > X)
            break;
 
        // Add count of integers with
        // last K digits equal to z
        ans += ((X - z) / Math.pow(10, K) + 1);
    }
 
    // Return count
    return ans;
}
 
// Function to return the count of
// integers from L to R having the
// last K digits as equal
static int intCountInRange(int L, int R, int K)
{
    return (intCount(R, K)
            - intCount(L - 1, K));
}
 
// Driver Code
public static void main(String[] args)
{
    int L = 49;
    int R = 101;
    int K = 2;
 
    // Function Call
    System.out.print(intCountInRange(L, R, K));
 
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program for the above approach
 
# Function to return the count of
# integers from 1 to X having the
# last K digits as equal
def intCount(X, K):
     
    # Stores the total count of integers
    ans = 0
 
    # Loop to iterate over all
    # possible values of z
    for z in range(0, int(pow(10, K)),
                     int((pow(10, K) - 1) / 9)):
 
        # Terminate the loop when z > X
        if (z > X):
            break
 
        # Add count of integers with
        # last K digits equal to z
        ans += int((X - z) / int(pow(10, K)) + 1)
     
    # Return count
    return ans
 
# Function to return the count of
# integers from L to R having the
# last K digits as equal
def intCountInRange(L, R, K):
     
    return(intCount(R, K) - intCount(L - 1, K))
 
# Driver Code
L = 49
R = 101
K = 2
 
# Function Call
print(intCountInRange(L, R, K))
 
# This code is contributed by sanjoy_62


C#




// C# Program of the above approach
using System;
 
class GFG{
 
// Function to return the count of
// integers from 1 to X having the
// last K digits as equal
static int intCount(int X, int K)
{
    // Stores the total count of integers
    int ans = 0;
 
    // Loop to iterate over all
    // possible values of z
    for (int z = 0; z < Math.Pow(10, K);
         z += ((int)Math.Pow(10, K) - 1) / 9) {
 
        // Terminate the loop when z > X
        if (z > X)
            break;
 
        // Add count of integers with
        // last K digits equal to z
        ans += ((X - z) / (int)Math.Pow(10, K) + 1);
    }
 
    // Return count
    return ans;
}
 
// Function to return the count of
// integers from L to R having the
// last K digits as equal
static int intCountInRange(int L, int R, int K)
{
    return (intCount(R, K)
            - intCount(L - 1, K));
}
 
// Driver Code
public static void Main(String[] args)
{
    int L = 49;
    int R = 101;
    int K = 2;
 
    // Function Call
    Console.Write(intCountInRange(L, R, K));
 
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to return the count of
// integers from 1 to X having the
// last K digits as equal
function intCount(X, K)
{
     
    // Stores the total count of integers
    let ans = 0;
 
    // Loop to iterate over all
    // possible values of z
    for(let z = 0; z < Math.pow(10, K);
            z += Math.floor((Math.pow(10, K) - 1) / 9))
    {
         
        // Terminate the loop when z > X
        if (z > X)
            break;
 
        // Add count of integers with
        // last K digits equal to z
        ans += Math.floor(((X - z) /
               Math.pow(10, K) + 1));
    }
 
    // Return count
    return ans;
}
 
// Function to return the count of
// integers from L to R having the
// last K digits as equal
function intCountInRange(L, R, K)
{
    return(intCount(R, K) -
           intCount(L - 1, K));
}
 
// Driver Code
let L = 49;
let R = 101;
let K = 2;
 
// Function Call
document.write(intCountInRange(L, R, K));
 
// This code is contributed by Potta Lokesh
 
</script>


Output

6

Time Complexity: O(log K)
Space Complexity: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
13 Sep, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments