Given an integer sequence 1, 2, 3, 4, …, n. The task is to divide it into two sets A and B in such a way that each element belongs to exactly one set and |sum(A) – sum(B)| is the minimum possible. Print the value of |sum(A) – sum(B)|.
Examples:
Input: 3 Output: 0 A = {1, 2} and B = {3} ans |sum(A) - sum(B)| = |3 - 3| = 0. Input: 6 Output: 0 A = {1, 3, 4} and B = {2, 5} ans |sum(A) - sum(B)| = |3 - 3| = 0. Input: 5 Output: 1
Approach:
Take mod = n % 4,
- If mod = 0 or mod = 3 then print 0.
- If mod = 1 or mod = 2 then print 1.
This is because the groups will be chosen as A = {N, N – 3, N – 4, N – 7, N – 8, …..}, B = {N – 1, N – 2, N – 5, N – 6, …..}
Starting from N to 1, place 1st element in group A then alternate every 2 elements in B, A, B, A, …..
- When n % 4 = 0: N = 8, A = {1, 4, 5, 8} and B = {2, 3, 6, 7}
- When n % 4 = 1: N = 9, A = {1, 4, 5, 8, 9} and B = {2, 3, 6, 7}
- When n % 4 = 2: N = 10, A = {1, 4, 5, 8, 9} and B = {2, 3, 6, 7, 10}
- When n % 4 = 3: N = 11, A = {1, 4, 5, 8, 9} and B = {2, 3, 6, 7, 10, 11}
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the minimum required // absolute difference int minAbsDiff( int n) { int mod = n % 4; if (mod == 0 || mod == 3) return 0; return 1; } // Driver code int main() { int n = 5; cout << minAbsDiff(n); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the minimum required // absolute difference static int minAbsDiff( int n) { int mod = n % 4 ; if (mod == 0 || mod == 3 ) { return 0 ; } return 1 ; } // Driver code public static void main(String[] args) { int n = 5 ; System.out.println(minAbsDiff(n)); } } // This code is contributed by Rajput-JI |
Python 3
# Python3 implementation of the approach # Function to return the minimum required # absolute difference def minAbsDiff(n) : mod = n % 4 ; if (mod = = 0 or mod = = 3 ) : return 0 ; return 1 ; # Driver code if __name__ = = "__main__" : n = 5 ; print (minAbsDiff(n)) # This code is contributed by Ryuga |
C#
// C# implementation of the // above approach using System; class GFG { // Function to return the minimum // required absolute difference static int minAbsDiff( int n) { int mod = n % 4; if (mod == 0 || mod == 3) { return 0; } return 1; } // Driver code static public void Main () { int n = 5; Console.WriteLine(minAbsDiff(n)); } } // This code is contributed by akt_mit |
PHP
<?php // PHP implementation of the approach // Function to return the minimum // required absolute difference function minAbsDiff( $n ) { $mod = $n % 4; if ( $mod == 0 || $mod == 3) return 0; return 1; } // Driver code $n = 5; echo minAbsDiff( $n ); // This code is contributed by Tushil. ?> |
Javascript
<script> // Javascript implementation of the above approach // Function to return the minimum // required absolute difference function minAbsDiff(n) { let mod = n % 4; if (mod == 0 || mod == 3) { return 0; } return 1; } let n = 5; document.write(minAbsDiff(n)); </script> |
1
Time Complexity: O(1) // since no loop is used so the algorithm takes constant time to execute completely.
Auxiliary Space: O(1) // since no extra array is used the algorithm takes up constant space to run completely.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!