Given an integer a which is the side of a square, the task is to find the biggest Reuleaux Triangle that can be inscribed within it.
Examples:
Input: a = 6
Output: 25.3717Input: a = 8
Output: 45.1053
Approach: We know that the Area of Reuleaux Triangle is 0.70477 * b2 where b is the distance between the parallel lines supporting the Reuleaux Triangle.
From the figure, it is clear that distance between parallel lines supporting the Reuleaux Triangle = Side of the square i.e. a
So, Area of the Reuleaux Triangle, A = 0.70477 * a2
Below is the implementation of the above approach:
C++
// C++ Program to find the area // of the biggest Reuleaux triangle // that can be inscribed within a square #include <bits/stdc++.h> using namespace std; // Function to find the Area // of the Reuleaux triangle float ReuleauxArea( float a) { // Side cannot be negative if (a < 0) return -1; // Area of the Reuleaux triangle float A = 0.70477 * pow (a, 2); return A; } // Driver code int main() { float a = 6; cout << ReuleauxArea(a) << endl; return 0; } |
Java
// Java Program to find the area // of the biggest Reuleaux triangle // that can be inscribed within a square import java.lang.Math; class cfg { // Function to find the Area // of the Reuleaux triangle static double ReuleauxArea( double a) { // Side cannot be negative if (a < 0 ) return - 1 ; // Area of the Reuleaux triangle double A = 0.70477 * Math.pow(a, 2 ); return A; } // Driver code public static void main(String[] args) { double a= 6 ; System.out.println(ReuleauxArea(a) ); } } //This code is contributed by Mukul Singh. |
Python3
# Python3 Program to find the area # of the biggest Reuleaux triangle # that can be inscribed within a square # Function to find the Area # of the Reuleaux triangle def ReuleauxArea(a) : # Side cannot be negative if (a < 0 ) : return - 1 # Area of the Reuleaux triangle A = 0.70477 * pow (a, 2 ); return A # Driver code if __name__ = = "__main__" : a = 6 print (ReuleauxArea(a)) # This code is contributed by Ryuga |
C#
// C# program to find area of the //biggest Reuleaux triangle that can be inscribed //within a square using System; class GFG { // Function to find the area // of the reuleaux triangle static double reuleauxArea( double a) { //Side cannot be negative if (a<0) return -1; // Area of the reuleaux triangle double A=0.70477*Math.Pow(a,2); return A; } // Driver code static public void Main() { double a= 6; Console.WriteLine(reuleauxArea( a)); } } //This code is contributed by Mohit kumar 29 |
PHP
<?php // PHP Program to find the area of the // biggest Reuleaux triangle that can // be inscribed within a square // Function to find the Area // of the Reuleaux triangle function ReuleauxArea( $a ) { // Side cannot be negative if ( $a < 0) return -1; // Area of the Reuleaux triangle $A = 0.70477 * pow( $a , 2); return $A ; } // Driver code $a = 6; echo ReuleauxArea( $a ) . "\n" ; // This code is contributed by ita_c ?> |
Javascript
<script> // javascript Program to find the area // of the biggest Reuleaux triangle // that can be inscribed within a square // Function to find the Area // of the Reuleaux triangle function ReuleauxArea(a) { // Side cannot be negative if (a < 0) return -1; // Area of the Reuleaux triangle var A = 0.70477 * Math.pow(a, 2); return A; } // Driver code var a= 6; document.write(ReuleauxArea(a) ); // This code is contributed by Princi Singh </script> |
25.3717
Time Complexity: O(1)
Auxiliary Space: O(1)