Given a number of digits ‘N’ and base ‘B’, the task is to count all the ‘N’ digit numbers without leading zeros that are in base ‘B’
Examples:
Input: N = 2, B = 2 Output: 2 All possible numbers without leading zeros are 10 and 11. Input: N = 5, B = 8 Output: 28672
Approach:
- If the base is ‘B’ then every digit of the number can take any value within the range [0, B-1].
- So, B
‘N’ digit numbers are possible with base ‘B’ (including the numbers with leading zeros).
- And, if we fix the first digit as ‘0’ then the rest of the ‘N-1’ digits can form a total of B
numbers.
- So, the total number of ‘N’ digit numbers with base ‘B’ possible without leading zeros are B
– B
.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// function to count// all permutationsvoid countPermutations(int N, int B){ // count of // all permutations int x = pow(B, N); // count of permutations // with leading zeros int y = pow(B, N - 1); // Return the permutations // without leading zeros cout << x - y << "\n";}// Driver codeint main(){ int N = 6; int B = 4; countPermutations(N, B); return 0;} |
Java
// Java implementation of the approachclass GFG{// function to count// all permutationsstatic void countPermutations(int N, int B){ // count of // all permutations int x = (int)Math.pow(B, N); // count of permutations // with leading zeros int y = (int)Math.pow(B, N - 1); // Return the permutations // without leading zeros System.out.println(x - y);}// Driver codepublic static void main(String[] args){ int N = 6; int B = 4; countPermutations(N, B);}}// This code is contributed by mits |
Python3
# Python3 implementation of the approach # function to count all permutations def countPermutations(N, B): # count of all permutations x = B ** N # count of permutations # with leading zeros y = B ** (N - 1) # Return the permutations # without leading zeros print(x - y) # Driver code if __name__ == "__main__": N, B = 6, 4 countPermutations(N, B) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the approachusing System;class GFG{// function to count// all permutationsstatic void countPermutations(int N, int B){ // count of // all permutations int x = (int)Math.Pow(B, N); // count of permutations // with leading zeros int y = (int)Math.Pow(B, N - 1); // Return the permutations // without leading zeros Console.WriteLine(x - y);}// Driver codepublic static void Main(){ int N = 6; int B = 4; countPermutations(N, B);}}// This code is contributed// by Akanksha Rai(Abby_akku) |
PHP
<?php// PHP implementation of the approach // function to count all permutations function countPermutations($N, $B) { // count of all permutations $x = pow($B, $N); // count of permutations // with leading zeros $y = pow($B, $N - 1); // Return the permutations // without leading zeros echo ($x - $y), "\n"; } // Driver code$N = 6; $B = 4; countPermutations($N, $B); // This code is contributed // by Sach_Code` ?> |
Javascript
<script>// Javascript implementation of the approach// function to count// all permutationsfunction countPermutations(N, B){ // count of // all permutations var x = Math.pow(B, N); // count of permutations // with leading zeros var y = Math.pow(B, N - 1); // Return the permutations // without leading zeros document.write( x - y );}// Driver codevar N = 6;var B = 4;countPermutations(N, B);</script> |
3072
Time Complexity: O(logn), since pow function takes logn time to find the power of a number to base n.
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
